- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求平面轨迹方程
- 立体几何中的轨迹问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现有一长为100码,宽为80码,球门宽为8码的矩形足球运动场地,如图所示,其中
是足球场地边线所在的直线,球门
处于所在直线的正中间位置,足球运动员(将其看做点
)在运动场上观察球门的角
称为视角.

(1)当运动员带球沿着边线
奔跑时,设
到底线的距离为
码,试求当
为何值时
最大;
(2)理论研究和实践经验表明:张角
越大,射门命中率就越大.现假定运动员在球场都是沿着垂直于底线的方向向底线运球,运动到视角最大的位置即为最佳射门点,以
的中点为原点建立如图所示的直角坐标系,求在球场区域
内射门到球门
的最佳射门点的轨迹.





(1)当运动员带球沿着边线





(2)理论研究和实践经验表明:张角




某校兴趣小组在如图所示的矩形区域
内举行机器人拦截挑战赛,在
处按
方向释放机器人甲,同时在
处按某方向释放机器人乙,设机器人乙在
处成功拦截机器人甲,若点
在矩形区城
内(包含边界),则挑战成功,否则挑战失败,已知
米,
为
中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线远动方式行进.

(1)如图建系,求
的轨迹方程;
(2)记
与
的夹角为
,
,如何设计
的长度,才能确保无论
的值为多少,总可以通过设置机器人乙的释放角度使之挑战成功?
(3)若
与
的夹角为
,
足够长,则如何设置机器人乙的释放角度,才能挑战成功?











(1)如图建系,求

(2)记






(3)若




阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山人时期的“数学三巨匠”,以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值
的动点的轨迹.已知在
中,角A,B,C所对的边分别为a,b,c,且
,
,则
面积的最大值为( )





A.![]() | B.![]() | C.![]() | D.![]() |
某校兴趣小组在如图所示的矩形区域
内举行机器人拦截挑战赛,在
处按
方向释放机器人甲,同时在
处按某方向释放机器人乙,设机器人乙在
处成功拦截机器人甲.若点
在矩形区域
内(包含边界),则挑战成功,否则挑战失败.已知
米,
为
中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记
与
的夹角为
.

(1)若
,
足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到
);
(2)如何设计矩形区域
的宽
的长度,才能确保无论
的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域
内成功拦截机器人甲?














(1)若



(2)如何设计矩形区域




设函数
分别在
、
处取得极小值、极大值.
平面上点
的坐标分别为
、
,该平面上动点
满足
,点
是点
关于直线
的对称点,
(1)求点
的坐标;
(2)求动点
的轨迹方程.












(1)求点

(2)求动点
