- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求平面轨迹方程
- 立体几何中的轨迹问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(1)求动点P的轨迹C的方程;
(2)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求·
的最小值.
过点P(2,4)作两条互相垂直的直线
,若
交x轴于A点,
交y轴于B点,若点M是线段AB上的点,且满足
,则点M的轨迹方程是__________.




已知
中,角
、
、
所对的边分别是
、
、
,且
,
,有以下四个命题:①满足条件的
不可能是直角三角形;②当
时,
的周长为15;③当
时,若
为
的内心,则
的面积为
;④
的面积的最大值为40.其中正确命题有__________(填写出所有正确命题的序号).













时,若





如图,点
、
,点
在
轴正半轴上,过线段
的
等分点
作与
垂直的射线
,在
上的动点
使
取得最大值的位置记作
.是否存在一条圆锥曲线,对任意的正整数
,点
都在这条曲线上?说明理由.















