- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 过圆上一点的圆的切线方程
- 过圆外一点的圆的切线方程
- 切线长
- 切点弦及其方程
- + 已知切线求参数
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的下焦点为
,
与短轴的两个端点构成正三角形,以
(坐标原点)为圆心,
长为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)设点
为直线
上任意一点,过点
作与直线
垂直的直线
,
交椭圆
于
两点,
的中点为
,求证:
三点共线.






(1)求椭圆

(2)设点











已知两个定点
,
,动点
满足
,设动点
的轨迹为曲线
,直线
:
.
(1)求曲线
的轨迹方程;
(2)若
与曲线
交于不同的
、
两点,且
(
为坐标原点),求直线
的斜率;
(3)若
,
是直线
上的动点,过
作曲线
的两条切线
、
,切点为
、
,探究:直线
是否过定点,若存在定点请写出坐标,若不存在则说明理由.








(1)求曲线

(2)若







(3)若










如图,在平面直角坐标系
中,设点
,直线
:
,点
在直线
上移动,
是线段
与
轴的交点,过
、
分别作直线
、
,使
,
,
.

(1)求动点
的轨迹
的方程;
(2)已知⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,若直线
在
轴上的截距为
,求
的最小值.

















(1)求动点


(2)已知⊙











已知椭圆
:
右焦点为
,右顶点为
,点
在椭圆上,且
轴,直线
交
轴于点
,若
;
(1)求椭圆的离心率;
(2)设经过点
且斜率为
的直线
与椭圆在
轴上方的交点为
,圆
同时与
轴和直线
相切,圆心
在直线
上,且
. 求椭圆的方程.










(1)求椭圆的离心率;
(2)设经过点










