- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与圆的位置关系
- + 由直线与圆的位置关系求参数
- 求直线与圆交点的坐标
- 直线与圆相交的性质——韦达定理及应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,
,动点
满足
.设动点
的轨迹为
.
(1)求动点
的轨迹方程,并说明轨迹
是什么图形;
(2)求动点
与定点
连线的斜率的最小值;
(3)设直线
交轨迹
于
两点,是否存在以线段
为直径的圆经过
?若存在,求出实数
的值;若不存在,说明理由.






(1)求动点


(2)求动点


(3)设直线






已知过原点的动直线
与圆
相交于不同的两点
,
.
(1)求圆
的圆心坐标;
(2)求线段
的中点
的轨迹
的方程;
(3)是否存在实数
,使得直线
与曲线
只有一个交点?若存在,求出
的取值范围;若不存在,说明理由.





(1)求圆

(2)求线段



(3)是否存在实数





已知圆
的圆心
在
轴的正半轴上,半径为2,且被直线
截得的弦长为
.
(1)求圆
的方程;
(2)设
是直线
上的动点,过点
作圆
的切线
,切点为
,证明:经过
,
,
三点的圆必过定点,并求出所有定点的坐标.





(1)求圆

(2)设









在平面直角坐标系xOy中,曲线y=x
-6x+1与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)试判断是否存在斜率为1的直线,使其与圆C交于A, B两点,且OA⊥OB,若存在,求出该直线方程,若不存在,请说明理由.

(Ⅰ)求圆C的方程;
(Ⅱ)试判断是否存在斜率为1的直线,使其与圆C交于A, B两点,且OA⊥OB,若存在,求出该直线方程,若不存在,请说明理由.