- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与圆的位置关系
- + 由直线与圆的位置关系求参数
- 求直线与圆交点的坐标
- 直线与圆相交的性质——韦达定理及应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的离心率是
,且椭圆经过点
.
(1)求椭圆
的标准方程;
(2)若直线
:
与圆
相切:
(ⅰ)求圆
的标准方程;
(ⅱ)若直线
过定点
,与椭圆
交于不同的两点
,与圆
交于不同的两点
,求
的取值范围.



(1)求椭圆

(2)若直线



(ⅰ)求圆

(ⅱ)若直线







已知圆
,直线
,
.
(1)求证:对
,直线
与圆
总有两个不同的交点
;
(2)是否存在实数
,使得圆
上有四点到直线
的距离为
?若存在,求出
的范围;若不存在,说明理由;
(3)求弦
的中点
的轨迹方程,并说明其轨迹是什么曲线.



(1)求证:对




(2)是否存在实数





(3)求弦


在平面直角坐标系
中,圆
与
轴的两个交点分别为
,其中
在
的右侧,以
为直径的圆记为圆
,过点
作直线
与圆
,圆
分别交于
两点.若
为线段
的中点,则直线
的方程为_________.















