- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 圆的对称性的应用
- + 定点到圆上点的最值(范围)
- 圆上点到定直线(图形)上的最值(范围)
- 过圆内定点的弦长最值(范围)
- 圆的弧长、面积、圆心角等计算
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数k(
,
)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点A、B间的距离为2,动点P满足
,则
的最大值为( )




A.![]() | B.![]() | C.![]() | D.![]() |
已知向量
垂直于向量
,向量
垂直于向量
.
(1)求向量
与
的夹角;
(2)设
,且向量
满足
,求
的最小值;
(3)在(2)的条件下,随机选取一个向量
,求
的概率.




(1)求向量


(2)设




(3)在(2)的条件下,随机选取一个向量

