- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线的倾斜角与斜率
- 直线的方程
- 直线的交点坐标与距离公式
- + 直线综合
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在△ABC中,已知A(5,-2),B(7,3),且AC边的中点M在y轴上,BC的中点N在x轴上.

(1)求点C的坐标;
(2)求
边上的中线所在直线方程.

(1)求点C的坐标;
(2)求

在平面直角坐标系
中,
是坐标原点,设函数
的图象为直线
,且
与
轴、
轴分别交于
、
两点,给出下列四个命题:
①存在正实数
,使
的面积为
的直线
仅有一条;
②存在正实数
,使
的面积为
的直线
仅有二条;
③存在正实数
,使
的面积为
的直线
仅有三条;
④存在正实数
,使
的面积为
的直线
仅有四条.
其中,所有真命题的序号是( ).









①存在正实数




②存在正实数




③存在正实数




④存在正实数




其中,所有真命题的序号是( ).
A.①②③ | B.③④ | C.②④ | D.②③④ |
已知抛物线
的方程为
,过点
(
为常数)作抛物线
的两条切线,切点分别为
,
.
(1)过焦点且在
轴上截距为
的直线
与抛物线
交于
,
两点,
,
两点在
轴上的射影分别为
,
,且
,求抛物线
的方程;
(2)设直线
,
的斜率分别为
,
.求证:
为定值.







(1)过焦点且在













(2)设直线





如图,
是椭圆
长轴的两个端点,
是椭圆上与
均不重合的相异两点,设直线
的斜率分别是
.
(1)求
的值;
(2)若直线
过点
,求证:
;
(3)设直线
与
轴的交点为
(
为常数且
),试探究直线
与直线
的交点
是否落在某条定直线上?若是,请求出该定直线的方程;若不是,请说明理由.






(1)求

(2)若直线



(3)设直线









已知圆C的方程:
和直线l的方程:
,点P是圆C上动点,直线l与两坐标轴交于A、B两点.
(1)求与圆C相切且垂直于直线l的直线方程;
(2)求
面积的取值范围。


(1)求与圆C相切且垂直于直线l的直线方程;
(2)求
