- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线的倾斜角与斜率
- 直线的方程
- 直线的交点坐标与距离公式
- + 直线综合
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
直线l与l1关于点(1,-1)成中心对称,若l的方程是2x+3y-6=0,则l1的方程是( )
A.2x+3y+8=0 | B.2x+3y+7=0 |
C.3x-2y-12=0 | D.3x-2y+2=0 |
直线l1,l2分别过点M(-1,4),N(3,1),它们分别绕点M和N旋转,但必须保持平行,那么它们之间的距离d的取值范围是( )
A.(0,5] | B.(0,+∞) |
C.(5,+∞) | D.[5,+∞) |
将直线l绕它上面一点P按逆时针方向旋转角α(0°<α<90°)后,所得直线方程是6x+y-60=0.若再向同方向旋转90°-α后,所得直线方程是x+y=0,求l的方程.
四边形OABC的四个顶点坐标分别为O(0,0)、A(6,2)、B(4,6)、C(2,6),直线y=kx(
<k<3)分四边形OABC为两部分,S表示靠近x轴一侧的那一部分的面积.
(1)求S=f(k)的函数表达式;
(2)当k为何值时,直线y=kx将四边形OABC分为面积相等的两部分?

(1)求S=f(k)的函数表达式;
(2)当k为何值时,直线y=kx将四边形OABC分为面积相等的两部分?