- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求点到直线的距离
- 直线围成图形的面积问题
- 已知点到直线距离求参数
- 求到两点距离相等的直线方程
- 求点关于直线的对称点
- 求两点的对称轴
- 光线反射问题(2)——直线关于直线对称
- 坐标法的应用——点到直线的距离
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知椭圆
,左、右焦点分别为
,
,右顶点为
,上顶点为
,
为椭圆上在第一象限内一点.

(1)若
.
①求椭圆的离心率
;
②求直线
的斜率.
(2)若
,
,
成等差数列,且
,求直线
的斜率的取值范围.







(1)若

①求椭圆的离心率

②求直线

(2)若





在平面直角坐标系
中,已知
,
是圆
上两个动点,且满足
(
),设
,
到直线
的距离之和的最大值为
,若数列
的前
项和
恒成立,则实数
的取值范围是( )














A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆
:
的左顶点为
,右焦点为
,过点
且斜率为1的直线交椭圆
于另一点
,交
轴于点
,
.

(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于
两点,连接
(
为坐标原点)并延长交椭圆
于点
,求
面积的最大值及取最大值时直线
的方程.











(1)求椭圆

(2)过点










已知椭圆
:
,左焦点是
.
(1)若左焦点
与椭圆
的短轴的两个端点是正三角形的三个顶点,点
在椭圆
上.求椭圆
的方程;
(2)过原点且斜率为
的直线
与(1)中的椭圆
交于不同的两点
,设
,求四边形
的面积取得最大值时直线
的方程;
(3)过左焦点
的直线
交椭圆
于
两点,直线
交直线
于点
,其中
是常数,设
,
,计算
的值(用
的代数式表示).



(1)若左焦点





(2)过原点且斜率为







(3)过左焦点











