- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 相交直线的交点坐标
- + 两点间的距离公式
- 求平面两点间的距离
- 由顶点坐标判断三角形的形状
- 由距离求点的坐标
- 用两点间的距离公式求函数最值
- 点到直线的距离公式
- 两条平行线间的距离公式
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知平面上的线段
及点
,任取
上一点
,线段
长度的最小值称为点
到线段
的距离,记作
.请你写出到两条线段
,
距离相等的点的集合
,
,
,其中
,
,
,
,
,
是下列两组点中的一组.对于下列两种情形,只需选做一种,满分分别是① 3分;② 5分.①
,
,
,
;②
,
,
,
.你选择第_____种情形,到两条线段
,
距离相等的点的集合
_____________.






























阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点Q、P的距离之比
,那么点M的轨迹就是阿波罗尼斯圆.已知动点M的轨迹是阿波罗尼斯圆,其方程为
,定点Q为x轴上一点,
且
,若点
,则
的最小值为( )







A.![]() | B.![]() | C.![]() | D.![]() |
已知动点P到直线
的距离与到点
的距离之比为
.
(1)求动点P的轨迹
;
(2)直线
与曲线
交于不同的两点A,B(A,B在
轴的上方)
:
①当A为椭圆与
轴的正半轴的交点时,求直线
的方程;
②对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.



(1)求动点P的轨迹

(2)直线




①当A为椭圆与


②对于动直线



再直角坐标系中,定义两点
,
间的“直角距离”为
,现有下列命题:
①若
,
是
轴上两点,则
②已知
,
,则
为定值
③原点
到直线
上任一点
的直角距离
的最小值为
④设
且
,
,若点
是在过
与
的直线上,且点
到点
与
的“直角距离”之和等于
,那么满足条件的点
只有
个.
其中的真命题是____________.(写出所有真命题的序号)



①若




②已知



③原点





④设












其中的真命题是____________.(写出所有真命题的序号)
在平面直角坐标系
中,O为坐标原点,点
,直线
.
(1)若坐标平面上动点M满足
,求动点M轨迹C的方程;
(2)设半径为
,圆心N在
上的圆N和(1)中轨迹C有公共点,求圆心N横坐标
的取值范围.



(1)若坐标平面上动点M满足

(2)设半径为


