- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,
轴,点
在
的延长线上,且
.当点
在圆
上运动时,

(1)求点
的轨迹方程.
(2)过点
作直线
与点
的轨迹相交于
、
两点,使点
被弦
平分,求直线
的方程.







(1)求点

(2)过点








已知椭圆
的左、右焦点为别为F1、F2,且过点
和
.

(1)求椭圆的标准方程;
(2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点B,AO的延长线与椭圆交于点C,求△ABC面积的最大值,并写出取到最大值时直线BC的方程.




(1)求椭圆的标准方程;
(2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点B,AO的延长线与椭圆交于点C,求△ABC面积的最大值,并写出取到最大值时直线BC的方程.
已知抛物线:
的焦点为
,直线
:
与抛物线交于
,
两点,
,
的延长线与抛物线交于
,
两点.
(1)若
的面积等于3,求
的值;
(2)记直线
的斜率为
,证明:
为定值,并求出该定值.










(1)若


(2)记直线


