- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间几何体
- 点、直线、平面之间的位置关系
- + 空间向量与立体几何
- 空间直角坐标系
- 空间向量及其运算
- 空间向量的应用
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知圆柱
的底面圆
的半径
,圆柱的表面积为
;点
在底面圆
上,且直线
与下底面所成的角的大小为
,

(1)求点
到平面
的距离;
(2)求二面角
的大小(结果用反三角函数值表示).









(1)求点


(2)求二面角

设点
分别是棱长为2的正方体
的棱
的中点.如图,以
为坐标原点,射线
、
、
分别是
轴、
轴、
轴的正半轴,建立空间直角坐标系.

(1)求向量
与
的数量积;
(2)若点
分别是线段
与线段
上的点,问是否存在直线
,
平面
?若存在,求点
的坐标;若不存在,请说明理由.











(1)求向量


(2)若点







在空间直角坐标系Oxyz中,点M(0,m,0)到点P(1,0,2)和点Q(1,-3,1)的距离相等,则实数m的值为( )
A.-2 | B.-1 | C.1 | D.2 |