- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 棱柱的结构特征和分类
- 判断几何体是否为棱柱
- 正棱柱及其有关计算
- 棱柱的展开图及最短距离问题
- 判断正方体的截面形状
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是________ .
判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.
(1)长方体是四棱柱,直四棱柱是长方体.(________)
(2)四棱柱、四棱台、五棱锥都是六面体.(________)
(1)长方体是四棱柱,直四棱柱是长方体.(________)
(2)四棱柱、四棱台、五棱锥都是六面体.(________)
下列结论中正确的个数是( )
①正三棱锥的顶点在底面的射影到底面各顶点的距离相等;
②有两个侧面是矩形的棱柱是直棱柱;
③两个底画平行且相似的多面体是棱台;
④底面是正三角形,其余各面都是等腰三角形的三棱锥一定是正三棱锥.
①正三棱锥的顶点在底面的射影到底面各顶点的距离相等;
②有两个侧面是矩形的棱柱是直棱柱;
③两个底画平行且相似的多面体是棱台;
④底面是正三角形,其余各面都是等腰三角形的三棱锥一定是正三棱锥.
A.0 | B.1 | C.5 | D.4 |
如图1-1-4所示的几何体:

将它们按截面的形状分成两类时,下面分类方法正确的是( )

将它们按截面的形状分成两类时,下面分类方法正确的是( )
A.截面可能是圆和三角形两类 | B.截面可能是圆和四边形两类 |
C.截面可能是圆和五边形两类 | D.截面可能是三角形和四边形两类 |
在一个长方体的容器中,里面装有少量的水,现在将容器绕着其底部的一条棱倾斜.
(1)在倾斜的过程中,水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?
(2)在倾斜的过程中,水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?
(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底面的一个顶点,上面的第(1)问和第(2)问对不对?
(1)在倾斜的过程中,水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?
(2)在倾斜的过程中,水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?
(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底面的一个顶点,上面的第(1)问和第(2)问对不对?

下列关于简单几何体的说法中正确的是( )
①有两个面互相平行,其余各面都是平行四边形的多面体是棱柱;
②有一个面是多边形,其余各面都是三角形的几何体是棱锥;
③有两个底面平行且相似,其余各面都是梯形的多面体是棱台;
④空间中到定点的距离等于定长的所有点的集合是球面.
①有两个面互相平行,其余各面都是平行四边形的多面体是棱柱;
②有一个面是多边形,其余各面都是三角形的几何体是棱锥;
③有两个底面平行且相似,其余各面都是梯形的多面体是棱台;
④空间中到定点的距离等于定长的所有点的集合是球面.
A.①② | B.③④ | C.④ | D.②④ |
下列有关棱柱的说法:
①棱柱的所有的面都是平的;
②棱柱的所有的棱长都相等;
③棱柱的所有的侧面都是长方形或正方形;
④棱柱的侧面的个数与底面的边数相等;
⑤棱柱的上、下底面形状、大小相等.
其中正确的有______ .(填序号)
①棱柱的所有的面都是平的;
②棱柱的所有的棱长都相等;
③棱柱的所有的侧面都是长方形或正方形;
④棱柱的侧面的个数与底面的边数相等;
⑤棱柱的上、下底面形状、大小相等.
其中正确的有