- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式求积的最大值
- + 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆的方程为
,其离心率
,且短轴的个端点与两焦点组成的三角形面积为
,过椭圆上的点
作
轴的垂线,垂足为
,点
满足
,设点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若直线
与曲线
相切,且交椭圆于
两点,
,记
的面积为
,
的面积为
,求
的最大值 .










(1)求曲线

(2)若直线









在平面直角坐标系
中,椭圆
的长轴长
,短轴长
.

(1)求椭圆的方程;
(2)记椭圆的左右顶点
,分别过
作
轴的垂线交直线
于点
,
为 椭圆上位于
轴上方的动点,直线
,
分别交直线
于点
,
.
(i)当直线
的斜率为2时,求
的面积;
(ii)求
的最小值.





(1)求椭圆的方程;
(2)记椭圆的左右顶点












(i)当直线


(ii)求
