- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式求积的最大值
- + 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的定义域为
,且
,设点P是函数
图像上的任意一点,过点P分别作直线
和y轴的垂线,垂足分别为M、N.
(1)求
的值;
(2)问:
是否为定值?若是,则求出该定值,若不是则说明理由;
(3)设
为坐标原点,求四边形
面积的最小值.



图像上的任意一点,过点P分别作直线

(1)求

(2)问:

(3)设


一艘船每小时的燃料费与船的速度的平方成正比,如果此船速度是10km/h,那么每小时的燃料费是80元.已知船航行时其他费用为500元/时,在100 km航程中,航速多少时船行驶总费用最少?此时总费用多少元?