- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列-单利
- 数列-复利
- 数列-分期付款
- 数列-产值增长
- 数列-养老保险
- 数列-浓度匹配
- + 数列-其他模型
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某辆汽车购买时的费用是15万元,每年使用的保险费、路桥费、汽油费等约为1.5万元.年维修保养费用第一年3000元,以后逐年递增3000元,则这辆汽车报废的最佳年限(即使用多少年的年平均费用最少)是()
A.8 年 | B.1O 年 | C.12 年 | D.15 年 |
在一次人才招聘会上,有A、B两家公司分别开出它们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%,设某人年初被A、B两家公司同时录用,试问:
(1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少?
(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(其他因素不计),该人应该选择哪家公司?为什么?(参考值:
、
、
)
(1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少?
(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(其他因素不计),该人应该选择哪家公司?为什么?(参考值:



对于数对序列
,记
,
,其中
表示
和
两个数中最大的数.
(1)对于数对序列
,求
的值;
(2)记
为
,
,
,
四个数中最小的数,对于由两个数对
组成的数对序列
和
,试分别对
和
两种情况比较
和
的大小;
(3)在由五个数对
组成的所有数对序列中,写出一个数对序列
使
最小,并写出
的值.(只需写出结论).






(1)对于数对序列


(2)记












(3)在由五个数对




.表1中数阵称为“森德拉姆筛”,其特点是每行每列都是等差数列,则表中数字206共出现 次.
2 | 3 | 4 | 5 | 6 | 7 | … |
3 | 5 | 7 | 9 | 11 | 13 | … |
4 | 7 | 10 | 13 | 16 | 19 | … |
5 | 9 | 13 | 17 | 21 | 25 | … |
6 | 11 | 16 | 21 | 26 | 31 | … |
7 | 13 | 19 | 25 | 31 | 37 | … |
… | … | … | … | … | … | … |
根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量Sn(万件)近似地满足Sn=
(21n-n2-5)(n=1,2,…,12).按此预测,在本年度内,需求量超过1.5万件的月份是( )

A.5月、6月 | B.6月、7月 |
C.7月、8月 | D.8月、9月 |
某市2006年底有住房面积1200万平方米,计划从2007年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%.
(1)分别求2007年底和2008年底的住房面积;
(2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)
(1)分别求2007年底和2008年底的住房面积;
(2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)
若数列
满足
(
;
,
),称数列
为
数列,记
为其前
项和.
(Ⅰ)写出一个满足
,且
的
数列
;
(Ⅱ)若
,
,证明:若
数列
是递增数列,则
;反之,若
,则
数列
是递增数列;
(Ⅲ)对任意给定的整数
(
),是否存在首项为0的
数列
,使得
?如果存在,写出一个满足条件的
数列
;如果不存在,说明理由.









(Ⅰ)写出一个满足




(Ⅱ)若








(Ⅲ)对任意给定的整数







中国历法推测遵循以测为辅、以算为主的原则,例如《周髀算经》和《易经》里对二十四节气的晷(guǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影长则是按照等差数列的规律计算得出的,下表为《周髀算经》对二十四节气晷影长的记录,其中115.1
寸表示115寸1
分(1寸=10分).已知《易经》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中所记录的惊蛰的晷影长应为( )


A.72.4寸 | B.81.4寸 | C.82.0寸 | D.91.6寸 |
2017年12月4日0时起郑州市实施机动车单双号限行,新能源汽车不在限行范围内,某人为了出行方便,准备购买某能源汽车.假设购车费用为14.4万元,每年应交付保险费、充电费等其他费用共0.9万元,汽车的保养维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增.
(1)设使用
年该车的总费用(包括购车费用)为
,试写出
的表达式;
(2)问这种新能源汽车使用多少年报废最合算(即该车使用多少年平均费用最少),年平均费用的最小值是多少?
(1)设使用



(2)问这种新能源汽车使用多少年报废最合算(即该车使用多少年平均费用最少),年平均费用的最小值是多少?