- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列-单利
- 数列-复利
- 数列-分期付款
- 数列-产值增长
- 数列-养老保险
- 数列-浓度匹配
- + 数列-其他模型
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某布匹批发市场一布商在10月20日购进4000匹布,21日开始销售.每天他都销售前一天库存布匹数目的20%后,再新进1000匹新布入库,设
天后销售及进货后库存布匹的数目为
(1)求
表示
(2)从几天后开始当日销售及进货后库存布匹不少于4900匹?


(1)求


(2)从几天后开始当日销售及进货后库存布匹不少于4900匹?
某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,为了维护设备的正常运行,第一年需要各种维护费用10万元,且从第二年开始,每年比上一年所需的维护费用要增加10万元
(1)求该设备给企业带来的总利润
(万元)与使用年数
的函数关系;
(2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?
(1)求该设备给企业带来的总利润


(2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?
某科技创新公司在第一年年初购买了一台价值昂贵的设备,该设备的第1年的维护费支出为20万元,从第2年到第6年,每年的维修费增加4万元,从第7年开始,每年维修费为上一年的125%.
(1)求第n年该设备的维修费
的表达式;
(2)设
,若
万元,则该设备继续使用,否则须在第n年对设备更新,求在第几年必须对该设备进行更新?
(1)求第n年该设备的维修费

(2)设


根据预测,某地第
个月共享单车的投放量和损失量分别为
和
(单位:辆),
其中
,
,第
个月底的共享单车的保有量是前
个月的
累计投放量与累计损失量的差.
(1)求该地区第4个月底的共享单车的保有量;
(2)已知该地共享单车停放点第
个月底的单车容纳量
(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?




其中




累计投放量与累计损失量的差.
(1)求该地区第4个月底的共享单车的保有量;
(2)已知该地共享单车停放点第


设数列
是集合
且
中所有的数从小到大排列成的数列,即
,
,
,
,
,
,
,将数列
中各项按照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则
的值为________













某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增.
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
对于
若数列
满足
则称这个数列为“
数列”.
(1)已知数列1,
是“
数列”,求实数
的取值范围;
(2)是否存在首项为
的等差数列
为“
数列”,且其前
项和
使得
恒成立?若存在,求出
的通项公式;若不存在,请说明理由;
(3)已知各项均为正整数的等比数列
是“
数列”,数列
不是“
数列”,若
试判断数列
是否为“
数列”,并说明理由.




(1)已知数列1,



(2)是否存在首项为







(3)已知各项均为正整数的等比数列







在一次人才招聘会上,有A、B两家公司分别开出了它们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资增加基础上递增5%,设某人年初被A、B两家公司同时录取,试问:
(1)若该人分别在A公司或B公司连续工作
年,则他在第
年的月工资收入分别是多少?
(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其它因素),该人应该选择哪家公司,为什么?
(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元(精确到1元),并说明理由.
(1)若该人分别在A公司或B公司连续工作


(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其它因素),该人应该选择哪家公司,为什么?
(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元(精确到1元),并说明理由.