- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 求等比数列前n项和
- 等比数列前n项和的基本量计算
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
,设F(x)=f(x+3)•g(x﹣3),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b﹣a的最小值为________


已知
、
是函数
的图象上的任意两点,点
在直线
上,且
.
(1)求
的值及
的值;
(2)已知
,当
时,
,设
,
数列
的前
项和,若存在正整数
,
,使得不等式
成立,求
和
的值;
(3)在(2)的条件下,设
,求所有可能的乘积
的和.






(1)求


(2)已知












(3)在(2)的条件下,设


对年利率为
的连续复利,要在
年后达到本利和
,则现在投资值为
,
是自然对数的底数.如果项目
的投资年利率为
的连续复利.
(1)现在投资5万元,写出满
年的本利和,并求满10年的本利和;(精确到0.1万元)
(2)一个家庭为刚出生的孩子设立创业基金,若每年初一次性给项目
投资2万元,那么,至少满多少年基金共有本利和超过一百万元?(精确到1年)







(1)现在投资5万元,写出满

(2)一个家庭为刚出生的孩子设立创业基金,若每年初一次性给项目

一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄
元一年定期,若年利率为
保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为





A.![]() | B.![]() |
C.![]() | D.![]() |
已知函数
常数
)满足
.
(1)求出
的值,并就常数
的不同取值讨论函数
奇偶性;
(2)若
在区间
上单调递减,求
的最小值;
(3)在(2)的条件下,当
取最小值时,证明:
恰有一个零点
且存在递增的正整数数列
,使得
成立.




(1)求出



(2)若



(3)在(2)的条件下,当




