- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 写出等比数列的通项公式
- 由定义判定等比数列
- + 等比数列通项公式的基本量计算
- 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
是等差数列,
是各项都为正数的等比数列,且
,
.
(1)求
,
的通项公式;
(2)设
,
,若
,
,
成等差数列(
、
为正整数且
),求
和
的值;
(3)设
为数列
的前
项和,是否存在实数
,使得
对一切
均成立?若存在,求出
的最大值;若不存在,说明理由.




(1)求


(2)设










(3)设







“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于
若第一个单音的频率为
,则第八个单音的频率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
已知等比数列
满足:
,
,各项均不为
的等差数列
的前
项为
,
,
,
.
(1)求数列
与
的通项公式;
(2)设集合
,若
只有两个元素,求实数
的取值范围.










(1)求数列


(2)设集合


