- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 求等差数列前n项和
- 等差数列前n项和的基本量计算
- 含绝对值的等差数列前n项和
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
是首项为
,公比为
的等比数列.数列
满足
,
是
的前
项和.
(Ⅰ)求
;
(Ⅱ)设同时满足条件:①
;②
(
,
是与
无关的常数)的无穷数列
叫“特界”数列.判断(1)中的数列
是否为“特界”数列,并说明理由.








(Ⅰ)求

(Ⅱ)设同时满足条件:①







设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:
n∈N*,Sn,Sn+1,Sn+2不构成等比数列.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:

设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:
n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:
