- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 求等差数列前n项和
- 等差数列前n项和的基本量计算
- 含绝对值的等差数列前n项和
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于数列
,若存在正数p,使得
对任意
都成立,则称数列
为“拟等比数列”.
已知
,
且
,若数列
和
满足:
,
且
,
.
若
,求
的取值范围;
求证:数列
是“拟等比数列”;
已知等差数列
的首项为
,公差为d,前n项和为
,若
,
,
,且
是“拟等比数列”,求p的取值范围
请用
,d表示
.






























已知等差数列
的公差为
,等差数列
的公差为
,设
,
分别是数列
,
的前
项和,且
,
,
.
(1)求数列
,
的通项公式;
(2)设
,数列
的前
项和为
,证明:
.












(1)求数列


(2)设





若
是递增数列,数列
满足:对任意
,存在
,使得
,则称
是
的“分隔数列”.
(1)设
,证明:数列
是
的分隔数列;
(2)设
是
的前n项和,
,判断数列
是否是数列
的分隔数列,并说明理由;
(3)设
是
的前n项和,若数列
是
的分隔数列,求实数
的取值范围.







(1)设



(2)设





(3)设




