- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 求等差数列前n项和
- 等差数列前n项和的基本量计算
- 含绝对值的等差数列前n项和
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设数列
是等差数列,且公差为d,若数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)若
,求证:该数列是“封闭数列”;
(2)试判断数列
是否是“封闭数列”,为什么?
(3)设
是数列
的前n项和,若公差
,试问:是否存在这样的“封闭数列”,使
;若存在,求
的通项公式,若不存在,说明理由.


(1)若

(2)试判断数列

(3)设





杨辉三角,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形。帕斯卡(1623——1662)是在1654年发现这一规律的,比杨辉要迟
年,比贾宪迟
年。如图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了,这又是我国数学史上的一个伟大成就。如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:
,则此数列前
项和为________.





阅读下面材料:在计算
时,我们发现,从第一个数开始,后面每个数与它的前面个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下面的公式来计算它们的和
,
(其中:
表示数的个数,
表示第一个数,
表示最后一个数)),那么
,利用或不利用上面的知识解答下面的问题:某集团总公司决定将下属的一个分公司对外招商承包,有符合条件的两家企业A、B分别拟定上缴利润,方案如下:A:每年结算一次上缴利润,第一年上缴利润100万元,以后每年比前一年增加100万元;B:每半年结算一次上缴利润,第一个半年上缴利润30万元,以后每半年比前半年增加30万元;
(1)如果承包4年,你认为应该承包给哪家企业,总公司获利多?
(2)如果承包
年,请用含
的代数式分别表示两家企业上缴利润的总金额,请问总公司应该如何在承包企业A、B中选择?








(1)如果承包4年,你认为应该承包给哪家企业,总公司获利多?
(2)如果承包

