- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 等差数列及其通项公式
- 等差中项
- 等差数列的性质
- 等差数列的函数特性
- + 等差数列的前n项和
- 求等差数列前n项和
- 等差数列前n项和的基本量计算
- 含绝对值的等差数列前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《算法统宗》里有一段叙述:“九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次第,孝和休惹外人传”,意思是将996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传.则第二和第七个孩子分得棉的斤数之和为( )
A.167 | B.176 | C.249 | D.255 |
在等差数列
中,首项
,公差
,若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为 .



一青蛙从点
开始依次水平向右和竖直向上跳动,其落点坐标依次是
,(如图,
的坐标以已知条件为准),
表示青蛙从点
到点
所经过的路程.

(1)点
为抛物线
准线上一点,点
,
均在该抛物线上,并且直线
经过该抛物线的焦点,证明
;
(2)若点
要么落在
所表示的曲线上,要么落在
所表示的曲线上,并且
,试写出
(不需证明);
(3)若点
要么落在
所表示的曲线上,要么落在
所表示的曲线上,并且
,求
的值.







(1)点








(2)若点





(3)若点





设{an}是公比为 q的等比数列,且a1,a3,a2成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
(Ⅰ)求q的值;
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.