- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 等差数列及其通项公式
- 等差中项
- + 等差数列的性质
- 利用等差数列的性质计算
- 等差数列的应用
- 等差数列的函数特性
- 等差数列的前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按31天算,记该女子一个月中的第
天所织布的尺数为
,则
的值为( )



A.![]() | B.![]() | C.![]() | D.![]() |
将正
分割
成个全等的小正三角形(图1,图2分别给出了
的情形),在每个三角形的顶点各放置一个数,使位于
的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别依次成等差数列,若顶点
处的三个数互不相同且和为1,记所有顶点上的数的和为
,已知
,则
(用含
的式子表达)__________










对于数列
,定义
,
.
(1)若
,是否存在
,使得
?请说明理由;
(2)若
,
,求数列
的通项公式;
(3)令
,求证:“
为等差数列”的充要条件是“
的前4项为等差数列,且
为等差数列”.



(1)若



(2)若



(3)令



