- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- + 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《张丘建算经》有一道题大意为:今有十等人,每等一人,宫赐金,依等次差(即等差)降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给,则每等人比下一等人多得( )斤?
A.![]() | B.![]() | C.![]() | D.![]() |
已知数列
的通项公式为
.
(1)若
成等比数列,求
的值;
(2)是否存在
使得
成等差数列,若存在,求出常数
的值;若不存在,请说明理由;
(3)求证:数列中的任意一项
总可以表示成数列中的其他两项的积.


(1)若


(2)是否存在



(3)求证:数列中的任意一项

如图数表:

每一行都是首项为1的等差数列,第
行的公差为
,且每一列也是等差数列,设第
行的第
项为
.
(1)证明:
成等差数列,并用
表示
(
);
(2)当
时,将数列
分组如下:(
),(
),(
),…(每组数的个数构成等差数列). 设前
组中所有数之和为
,求数列
的前
项和
;
(3)在(2)的条件下,设
是不超过20的正整数,当
时,求使得不等式
恒成立的所有
的值.

每一行都是首项为1的等差数列,第





(1)证明:




(2)当










(3)在(2)的条件下,设



