- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- + 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分14分)已知点
在直线
:
上,
是直线
与
轴的
交点,数列
是公差为1的等差数列.
(1)求数列
,
的通项公式;
(2)若
是否存在
,使
成立?若存在,求出所有符合
条件的
值;若不存在,请说明理由.







交点,数列

(1)求数列


(2)若



条件的

某物流公司进行仓储机器人升级换代期间,第一年有机器人
台,平均每台机器人创收利润
万元.预测以后每年平均每台机器人创收利润都比上一年增加
万元,但该物流公司在用机器人数量每年都比上一年减少
.
(1)设第
年平均每台机器人创收利润为
万元,在用机器人数量为
台,求
,
的表达式;
(2)依上述预测,第几年该物流公司在用机器人创收的利润最多?




(1)设第





(2)依上述预测,第几年该物流公司在用机器人创收的利润最多?