- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 等差数列及其通项公式
- 判断等差数列
- 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 等差中项
- 等差数列的性质
- 等差数列的函数特性
- 等差数列的前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列{an}的前n项为和Sn,点(n,
)在直线y=
x+
上.数列{bn}满足bn+2-2bn+1+bn=0(nÎN*),且b3=11,前9项和为153.
(1)求数列{an},{bn}的通项公式;
问是否存在mÎN*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.



(1)求数列{an},{bn}的通项公式;
(2)求数列的前
项和
