- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 距离测量问题
- 高度测量问题
- 角度测量问题
- 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,
为山脚两侧共线的3点,在山顶
处测得3点的俯角分别为
,计划沿直线
开通穿山隧道,为求出隧道
的长度,你认为还需要直接测量出
中哪些线段的长度?根据条件,并把你认为需要测量的线段长度作为已知量,写出计算隧道
长度的运算步骤.








海上有A、B两个小岛,相距
,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是( )

A.![]() | B.![]() | C.![]() | D.![]() |
如图,为测量河对岸A,B两点间的距离,选取相距40m的C,D两点,测得∠BCA=60°,∠ACD=30°,∠CDB=45°,∠BDA=60°,则A,B间的距离为( )


A.![]() | B.![]() | C.![]() | D.![]() |
两灯塔A、B与海洋观察站C的距离都等于
,灯塔A在观察站C的北偏东30°,灯塔B在观察站C的南偏东60°,则A、B之间的距离为( )

A.![]() | B.![]() | C.![]() | D.![]() |
已知船在A处测得它的南偏东30°的海面上有一灯塔C,船以每小时
的速度向东南方向航行半小时后到达B点,在B处看到灯塔在船的正西方向,这时船和灯塔相距________
.


为绘制海底地貌图,测量海底两点
,
间的距离,海底探测仪沿水平方向在
,
两点进行测量,
,
,
,
在同一个铅垂平面内. 海底探测仪测得
同时测得
海里。

(1)求AD的长度;
(2)求
,
之间的距离.












(1)求AD的长度;
(2)求


轮船A和轮船B在上午8时同时离开海港C,两船航行方向之间的夹角为120°,轮船A与轮船B的航行速度分别为25海里/小时和15海里/小时,则上午12时两船之间的距离是多少?
某烟花厂家为了测试最新研制出的一种“冲天”产品升空的安全性,特对其进行了一项测试。如图,这种烟花在燃放点C进行燃放实验,测试人员甲、乙分别在A,B两地(假设三地在同一水平面上),测试人员甲测得A、B两地相距80米且∠BAC=60°,甲听到烟花燃放“冲天”时的声音的时间比乙晚
秒.在A地测得该烟花升至最高点H处的仰角为60°.(已知声音的传播速度为340米∕秒)
(1)求甲距燃放点C的距离;(2)求这种烟花的垂直“冲天”高度HC

(1)求甲距燃放点C的距离;(2)求这种烟花的垂直“冲天”高度HC

设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在河岸边选定一点C,测出AC的距离是100 m,∠BAC=60°,∠ACB=30°,则A、B两点的距离为( )
A.40 m | B.50 m | C.60 m | D.70 m |