- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 正、余弦定理在几何中的应用
- 正、余弦定理判定三角形形状
- 证明三角形中的恒等式或不等式
- 求三角形中的最值与范围
- 几何图形中的计算
- 正、余弦定理的实际应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,某公路AB一侧有一块空地△OAB,其中OA=3km,OB=3
km,∠AOB=90°.当地政府拟在中间开挖一个人工湖△OMN,其中M,N都在边AB上(M,N不与A,B重合,M在A,N之间),且∠MON=30°.

(1)若M在距离A点2km处,求点M,N之间的距离;
(2)为节省投入资金,人工湖△OMN的面积要尽可能小.试确定M的位置,使△OMN的面积最小,并求出最小面积.


(1)若M在距离A点2km处,求点M,N之间的距离;
(2)为节省投入资金,人工湖△OMN的面积要尽可能小.试确定M的位置,使△OMN的面积最小,并求出最小面积.
小王同学为了测定在湖面上航模匀速航行的速度,采用如下方法:在岸边设置两个观察点
,
,且
长为80米,当航模在
处时,测得
和
,经过20秒后,航模直线航行到
处,测得
和
,则航模的速度为( )米/秒











A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,边长为1的正三角形
中,点
,
分别在线段
,
上,将
沿线段
进行翻折,得到右图所示的图形,翻折后的点
在线段
上,则线段
的最小值为_______ .










