- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 求正弦(型)函数的对称轴及对称中心
- 正弦函数的对称轴与单调性、最值的关系
- 由正弦函数的对称性求单调性
- 利用正弦函数的对称性求参数
- 利用正弦函数的对称性求最值
- 正弦函数对称性的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=
cos(2x-
).
(1)利用“五点法”,完成以下表格,并画出函数f(x)在一个周期上的图象;
(2)求函数f(x)的单调递减区间和对称中心的坐标;
(3)如何由y=cosx的图象变换得到f(x)的图象.


(1)利用“五点法”,完成以下表格,并画出函数f(x)在一个周期上的图象;
(2)求函数f(x)的单调递减区间和对称中心的坐标;
(3)如何由y=cosx的图象变换得到f(x)的图象.
2x-![]() | 0 | ![]() | π | ![]() | 2π |
x | | | | | |
f(x) | | | | | |
将函数f(x)=cos(x+
)的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,所得图象的一条对称轴方程可以是( )

A.![]() | B.![]() | C.![]() | D.![]() |
已知向量
=(2sinx,-1),
,函数f(x)=
.
(1)求函数f(x)的对称中心;
(2)设△ABC的内角A,B,C所对的边为a,b,c,且a2=bc,求f(A)的取值范围.



(1)求函数f(x)的对称中心;
(2)设△ABC的内角A,B,C所对的边为a,b,c,且a2=bc,求f(A)的取值范围.
已知函数
的最小正周期为4
,其图象关于直线
对称,给出下面四个结论:
①函数
在区间
上先增后减;②将函数
的图象向右平移
个单位后得到的图象关于原点对称;③点
是函数
图象的一个对称中心;④函数
在
上的最大值为1.其中正确的是( )



①函数








A.①② | B.③④ | C.①③ | D.②④ |