- 集合与常用逻辑用语
- 函数与导数
- 导数在函数中的其他应用
- + 利用导数解决实际应用问题
- 利润最大问题
- 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工程队共有500人,要建造一段6000米的高速公路,工程需要把500人分成两组,甲组的任务是完成一段4000米的软土地带,乙组的任务是完成剩下的2000米的硬土地带,据测算,软、硬土地每米的工程量是30工(工为计量单位)和40工.
(1)若平均分配两组的人数,分别计算两组完工的时间,并求出此时全队的筑路工期;
(2)如何分配两组的人数会使得全队的筑路工期最短?
(1)若平均分配两组的人数,分别计算两组完工的时间,并求出此时全队的筑路工期;
(2)如何分配两组的人数会使得全队的筑路工期最短?
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求k的值及f(x)的表达式。
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

(Ⅰ)求k的值及f(x)的表达式。
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
已知函数f(x)=
m(x-1)2-2x+3+ln x,m≥1.
(1)当m=
时,求函数f(x)在区间[1,3]上的极小值;
(2)求证:函数f(x)存在单调递减区间[a,b];
(3)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.

(1)当m=

(2)求证:函数f(x)存在单调递减区间[a,b];
(3)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.
(本小题满分12分,(1)小问6分,(2)小问6分)
重庆市杨家坪中学彩云湖校区于2014年11月正式动工.彩云湖校区将修建标准的400m跑道运动场.运动场总面积15000平方米,运动场是由一个矩形
和分别以
、
为直径的两个半圆组成,塑胶跑道宽8米(运动场平面图如图),已知塑胶跑道每平方米造价为150元,其它部分造价每平方米80元.

(1)设半圆的半径
(米),写出塑胶跑道面积
与
的函数关系式
;
(2)由于受运动场两侧看台限制,
的范围为
,问当
为何值时,运动场造价最低(第2问
取3近似计算).
重庆市杨家坪中学彩云湖校区于2014年11月正式动工.彩云湖校区将修建标准的400m跑道运动场.运动场总面积15000平方米,运动场是由一个矩形




(1)设半圆的半径




(2)由于受运动场两侧看台限制,




已知函数
,
满足
,且
,
为自然对数的底数.
(Ⅰ)已知
,求
在
处的切线方程;
(Ⅱ)若存在
,使得
成立,求
的取值范围;
(Ⅲ)设函数
,
为坐标原点,若对于
在
时的图象上的任一点
,在曲线
上总存在一点
,使得
,且
的中点在
轴上,求
的取值范围.





(Ⅰ)已知



(Ⅱ)若存在





(Ⅲ)设函数











