- 集合与常用逻辑用语
- 函数与导数
- 导数在函数中的其他应用
- + 利用导数解决实际应用问题
- 利润最大问题
- 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为
的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形
为中心在圆心的矩形,现计划将矩形
区域设计为可推拉的窗口.

(1)若窗口
为正方形,且面积大于
(木条宽度忽略不计),求四根木条总长的取值范围;
(2)若四根木条总长为
,求窗口
面积的最大值.




(1)若窗口


(2)若四根木条总长为


设
,函数
,其中
是自然对数的底数,曲线
在点
处的切线方程为
.
(1)求实数
的值;
(2)求证:函数
存在极小值;
(3)若
,使得不等式
成立,求实数
的取值范围.






(1)求实数

(2)求证:函数

(3)若


