- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- + 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,曲线
是一条居民平时散步的小道,小道两旁是空地,当地政府为了丰富居民的业余生活,要在小道两旁规划出两地来修建休闲活动场所,已知空地
和规划的两块用地(阴影区域)都是矩形,
,
,
,若以
所在直线为
轴,
为原点,建立如图平面直角坐标系,则曲线
的方程为
,记
,规划的两块用地的面积之和为
.(单位:)

(1)求
关于
的函数
;
(2)求
的最大值.













(1)求



(2)求

为美化环境,某市计划在以
、
两地为直径的半圆弧
上选择一点
建造垃圾处理厂(如图所示).已知
、
两地的距离为
,垃圾场对某地的影响度与其到该地的距离有关,对
、
两地的总影响度对
地的影响度和对
地影响度的和.记
点到
地的距离为
,垃圾处理厂对
、
两地的总影响度为
.统计调查表明:垃圾处理厂对
地的影响度与其到
地距离的平方成反比,比例系数为
;对
地的影响度与其到
地的距离的平方成反比,比例系数为
.当垃圾处理厂建在弧
的中点时,对
、
两地的总影响度为
.

(1)将
表示成
的函数;
(2)判断弧
上是否存在一点,使建在此处的垃圾处理厂对
、
两地的总影响度最小?若存在,求出该点到
地的距离;若不存在,说明理由.




























(1)将


(2)判断弧




如图,
、
是海岸线
、
上的两个码头,
为海中一小岛,在水上旅游线
上.测得
,
,
到海岸线
、
的距离分别为
,
.

(1)求水上旅游线
的长;
(2)海中
,且
处的某试验产生的强水波圆
,生成
小时时的半径为
.若与此同时,一艘游轮以
小时的速度自码头
开往码头
,试研究强水波是否波及游轮的航行?














(1)求水上旅游线

(2)海中









已知函数
,且存在不同的实数x1,x2,x3,使得f(x1)=f(x2)=f(x3),则x1•x2•x3的取值范围是( )

A.![]() | B.![]() | C.![]() | D.![]() |