刷题首页
题库
高中数学
题干
如图,
、
是海岸线
、
上的两个码头,
为海中一小岛,在水上旅游线
上.测得
,
,
到海岸线
、
的距离分别为
,
.
(1)求水上旅游线
的长;
(2)海中
,且
处的某试验产生的强水波圆
,生成
小时时的半径为
.若与此同时,一艘游轮以
小时的速度自码头
开往码头
,试研究强水波是否波及游轮的航行?
上一题
下一题
0.99难度 解答题 更新时间:2018-12-03 08:14:59
答案(点此获取答案解析)
同类题1
甲乙两地相距
海里,某货轮匀速行驶从甲地运输货物到乙地,运输成本包括燃料费用和其他费用.已知该货轮每小时的燃料费与其速度的平方成正比,比例系数为
,其他费用为每小时
元,且该货轮的最大航行速度为
海里/小时.
(
)请将该货轮从甲地到乙地的运输成本
表示为航行速度
(海里/小时)的函数.
(
)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?
同类题2
某创新团队拟开发一种新产品,根据市场调查估计能获得10万元到1000万元的收益,先准备制定一个奖励方案:奖金
(单位:万元)随收益
(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过收益的20%.
(1)若建立函数
模型制定奖励方案,试用数学语言表示该团队对奖励函数
模型的基本要求,并分析
是否符合团队要求的奖励函数模型,并说明原因;
(2)若该团队采用模型函数
作为奖励函数模型,试确定最小的正整数
的值.
同类题3
现有一块大型的广告宣传版面,其形状是右图所示的直角梯形
.某厂家因产品宣传的需要,拟投资规划出一块区域(图中阴影部分)为产品做广告,形状为直角梯形
(点
在曲线段
上,点
在线段
上).已知
,
,其中曲线段
是以
为顶点,
为对称轴的抛物线的一部分.
(1)建立适当的平面直角坐标系,分别求出曲线段
与线段
的方程;
(2)求该厂家广告区域
的最大面积.
同类题4
如图,多边形
由一个矩形
和一个去掉一个角的正方形组成,
现有距离为
且与
边平行的两条直线
截取该多边形所得图形(阴影部分)的面积为
,其中表示
与
间的距离,当
时,
=__________.
同类题5
如图,
,
,
三地有直道相通,
千米,
千米,
千米.现甲、乙两警员同时从
地出发匀速前往
地,经过
小时,他们之间的距离为
(单位:千米).甲的路线是
,速度为
千米/小时,乙的路线是
,速度为
千米/小时.乙到达
地后原地等待.设
时乙到达
地.
(1)求
与
的值;
(2)已知警员的对讲机的有效通话距离是
千米.当
时,求
的表达式,并判断
在
上得最大值是否超过
?说明理由.
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
建立拟合函数模型解决实际问题
由导数求函数的最值