- 集合与常用逻辑用语
- 函数与导数
- 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- + 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)若
在区间
上是增函数,求实数
的取值范围;
(2)若
是
的极值点,求
在
上的最大值;
(3)在(2)的条件下,是否存在实数
,使得函数
的图象与函数
的图象恰有3个交点?若存在,请求出实数
的取值范围;若不存在,试说明理由.

(1)若



(2)若




(3)在(2)的条件下,是否存在实数




设函数
,
.
(1)当
时,
在
上恒成立,求实数
的取值范围;
(2)当
时,若函数
在
上恰有两个不同零点,求实数
的取值范围;
(3)是否存在实数
,使函数
和函数
在公共定义域上具有相同的单调性?若存在,求出
的值,若不存在,说明理由.


(1)当




(2)当




(3)是否存在实数




函数
,其中
为常数.
(1)证明:对任意
的图象恒过定点;
(2)当
时,判断函数
是否存在极值?若存在,求出极值;若不存在,说明理由;
(3)若对任意
时,
恒为定义域上的增函数,求
的最大值.


(1)证明:对任意

(2)当


(3)若对任意



设函数
,
(1)当
时,
在
上恒成立,求实数
的取值范围;
(2)当
时,若函数
在
上恰有两个不同零点,求实数
的取值范围;
(3)是否存在实数
,使函数
和函数
在公共定义域上具有相同的单调区间?若存在,求出
的值,若不存在,说明理由.


(1)当




(2)当




(3)是否存在实数



