- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=x(x﹣a)(x﹣b).
(Ⅰ)若a=0,b=3,函数f(x)在(t,t+3)上既能取到极大值,又能取到极小值,求t的取值范围;
(Ⅱ)当a=0时,
对任意的x∈[2,+∞)恒成立,求b的取值范围.
(Ⅰ)若a=0,b=3,函数f(x)在(t,t+3)上既能取到极大值,又能取到极小值,求t的取值范围;
(Ⅱ)当a=0时,

设函数


(1)求

(2)试求b的值;
(3)若



已知函数
(a,b∈R),且其导函数f′(x)的图象过原点.
(1)若存在x<0,使得f′(x)=-9,求a的最大值;
(2)当a>0时,求函数f(x)的极值.

(1)若存在x<0,使得f′(x)=-9,求a的最大值;
(2)当a>0时,求函数f(x)的极值.
已知数列
,且
是函数
的一个极值点,数列
中
,
(
且
) .
(1)求数列
的通项公式;
(2)记
,当
时,数列
的前
项和为
,求使
的
的最小值;
(3)若
,证明:
.








(1)求数列

(2)记







(3)若

