- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知f(x)=8x2+16x﹣k(k∈R),g(x)=2x3+5x2+4x.
(1)求g(x)的极值;
(2)若∀x1、x2∈[﹣3,3],都有f(x1)≤g(x2)成立,求k的取值范围.
(1)求g(x)的极值;
(2)若∀x1、x2∈[﹣3,3],都有f(x1)≤g(x2)成立,求k的取值范围.
已知函数
(I)求函数
的极值;
(II)对于函数
和
定义域内的任意实数
,若存在常数
,使得不等式
和
都成立,则称直线
是函数
和
的“分界线”.
设函数
,
,试问函数
和
是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.

(I)求函数

(II)对于函数









设函数




理科已知函数
,当
时,函数
取得极大值.
(Ⅰ)求实数
的值;(Ⅱ)已知结论:若函数
在区间
内导数都存在,且
,则存在
,使得
.试用这个结论证明:若
,函数
,则对任意
,都有
;(Ⅲ)已知正数
满足
求证:当
,
时,对任意大于
,且互不相等的实数
,都有



(Ⅰ)求实数

















已知函数f(x)=
+aln(x-1),其中n∈N*,a为常数.
(1)当n=2时,求函数f(x)的极值;
(2)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x-1.

(1)当n=2时,求函数f(x)的极值;
(2)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x-1.
已知函数
.
(Ⅰ)求
的极值;
(II)判断y=f(x)的图像是否是中心对称图形,若是求出对称中心并证明,否则说明理由;
(III)设
的定义域为
,是否存在
.当
时,
的取值范围是
?若存在,求实数
、
的值;若不存在,说明理由

(Ⅰ)求

(II)判断y=f(x)的图像是否是中心对称图形,若是求出对称中心并证明,否则说明理由;
(III)设








