- 集合与常用逻辑用语
- 函数与导数
- 平均变化率
- + 导数的几何意义
- 求曲线切线的斜率(倾斜角)
- 求在曲线上一点处的切线方程
- 求过一点的切线方程
- 已知切线(斜率)求参数
- 两条切线平行、垂直、重合(公切线)问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=2ax3+bx2﹣6x在x=±1处取得极值
(1)讨论f(1)和f(﹣1)是函数f(x)的极大值还是极小值;
(2)试求函数f(x)在x=﹣2处的切线方程;
(3)试求函数f(x)在区间[﹣3,2]上的最值.
(1)讨论f(1)和f(﹣1)是函数f(x)的极大值还是极小值;
(2)试求函数f(x)在x=﹣2处的切线方程;
(3)试求函数f(x)在区间[﹣3,2]上的最值.
函数f(x)=x3+ax2+bx+c,曲线y=f(x)上点P(1,f(1))处的切线方程为y=3x+1
(1)若y=f(x)在x=﹣2时有极值,求函数y=f(x)在[﹣3,1]上的最大值;
(2)若函数y=f(x)在区间[﹣2,1]上单调递增,求b的取值范围.
(1)若y=f(x)在x=﹣2时有极值,求函数y=f(x)在[﹣3,1]上的最大值;
(2)若函数y=f(x)在区间[﹣2,1]上单调递增,求b的取值范围.
已知函数f(x)=ax+xln|x+b|是奇函数,且图象在点(e,f(e))(e为自然对数的底数)处的切线斜率为3.
(1)求实数a、b的值;
(2)若k∈Z,且k<
对任意x>1恒成立,求k的最大值;
(3)当n>m>1(n,m∈Z)时,证明:(mnn)m>(nmm)n.
(1)求实数a、b的值;
(2)若k∈Z,且k<

(3)当n>m>1(n,m∈Z)时,证明:(mnn)m>(nmm)n.
设函数f(x)
x3
x2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,
(1)确定b,c的值;
(2)设曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2),证明:当x1≠x2时,f′(x1)≠f′(x2);
(3)若过点(0,2)可作曲线y=f(x)的三条不同切线,求a的取值范围.


(1)确定b,c的值;
(2)设曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2),证明:当x1≠x2时,f′(x1)≠f′(x2);
(3)若过点(0,2)可作曲线y=f(x)的三条不同切线,求a的取值范围.