- 集合与常用逻辑用语
- 函数与导数
- 利用给定函数模型解决实际问题
- + 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,连结棱长为2
的正方体各面的中心得一个多面体容器,从顶点
处向该容器内注水,注满为止.已知顶点
到水面的高度
以每秒1
匀速上升,记该容器内水的体积
与时间
的函数关系是
,则函数
的导函数
的图像大致是( )












A.![]() | B.![]() | C.![]() | D.![]() |
某乡镇现在人均一年占有粮食360千克,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有y千克粮食,则y关于x的解析式为( )
A.y=360(![]() | B.y=360×1.04x |
C.y=![]() | D.y=360(![]() |
如图,有一块矩形空地
,要在这块空地上开辟一个内接四边形
为绿地,使其四个顶点分別落在矩形
的四条边上.已知
,
,且
,设
,绿地
的面积为
.

(1)写出
关于
的函数解析式,并求出它的定义域.
(2)当
为何值时,绿地面积最大?并求出最大值.










(1)写出


(2)当

某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:
f(t)=10-
cos
t-sin
t,t∈[0,24).
(1)求实验室这一天的最大温差.
(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?
f(t)=10-



(1)求实验室这一天的最大温差.
(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?
某公司为了实现2013年销售利润1 000万元的目标,准备制定一个激励销售人员的奖励方案:从销售利润达到10万元开始,按销售利润进行奖励,且奖金数额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金数额不超过5万元,同时奖金数额不超过销售利润的25%.现有三个奖励模型:y=0.025x,y=1.003x,y=
ln x+1,问其中是否有模型能完全符合公司的要求?请说明理由.
(参考数据:
,
,
)

(参考数据:



某网民用电脑上因特网有两种方案可选:一是在家里上网,费用分为通讯费(即电话费)与网络维护费两部分.现有政策规定:通讯费为0.02元/分钟,但每月30元封顶(即超过30元则只需交30元),网络维护费1元/小时,但每月上网不超过10小时则要交10元;二是到附近网吧上网,价格为1.5元/小时.
(Ⅰ)将该网民某月内在家上网的费用y(元)表示为时间t(小时)的函数;
(Ⅱ)试确定在何种情况下,该网民在家上网更便宜?
(Ⅰ)将该网民某月内在家上网的费用y(元)表示为时间t(小时)的函数;
(Ⅱ)试确定在何种情况下,该网民在家上网更便宜?
某森林出现火灾,火势正以每分钟100m2的速度顺风蔓延,消防站接到警报立即派消防员前去,在火灾发生后5分钟到达救火现场.已知消防队员在现场平均每人每分钟可灭火50m2,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁1m2森林损失费为60元.则应该派多少名消防队员前去救火,才能使总损失最少?并求最少损失费.
某厂有容量300吨的水塔一个,每天从早六点到晚十点供应生活和生产用水,已知:该厂生活用水每小时10吨,工业用水总量
(吨)与时间
(单位:小时,规定早晨六点时
)的函数关系为
,水塔的进水量有10级,第一级每小时进水10吨,以后每提高一级,进水量增加10吨.若某天水塔原有水100吨,在供应同时打开进水管.问该天进水量应选择几级,既能保证该厂用水(即水塔中水不空),又不会使水溢出?




据预测,某旅游景区游客人数在500至1300人之间,游客人数x(人)与游客的消费总额y(元)之间近似地满足关系:y=-x2+2400x-1000000.
(1)若该景区游客消费总额不低于400000元时,求景区游客人数的范围;
(2)当景区游客的人数为多少人时,游客的人均消费最高?并求游客的人均最高消费额.
(1)若该景区游客消费总额不低于400000元时,求景区游客人数的范围;
(2)当景区游客的人数为多少人时,游客的人均消费最高?并求游客的人均最高消费额.
如图所示,已知边长为8米的正方形钢板有一个角(阴影三角形)被锈蚀,其中
米,
米,为了合理利用这块钢板,将在五边形
内截取一个矩形块
,使点
在边
上.

(1)设
米,
米,将
表示成
的函数,并求出
的取值范围;
(2)求矩形
面积的最大值.







(1)设





(2)求矩形
