- 集合与常用逻辑用语
- 函数与导数
- 利用给定函数模型解决实际问题
- + 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某企业生产A,B两种产品,根据市场调查与预测,A产品的利润
与投资成正比,其关系如图①;B产品的利润
与投资的算术平方根成正比,其关系如图②.(注:利润和投资单位:万元)

(1)分别求出A,B两种产品的利润与投资之间的函数关系式;
(2)已知该企业已筹集到20万元资金,并将其全部投入A,B两种产品的生产,怎样分配这20万元投资,才能使该企业获得最大利润?其最大利润为多少万元?



(1)分别求出A,B两种产品的利润与投资之间的函数关系式;
(2)已知该企业已筹集到20万元资金,并将其全部投入A,B两种产品的生产,怎样分配这20万元投资,才能使该企业获得最大利润?其最大利润为多少万元?
为了培养学生的数学建模和应用能力,某校组织了一次实地测量活动,如图,假设待测量的树木
的高度
,垂直放置的标杆
的高度
,仰角
三点共线),试根据上述测量方案,回答如下问题:
(1)若测得
,试求
的值;
(2)经过分析若干测得的数据后,大家一致认为适当调整标杆到树木的距离
(单位:)使
与
之差较大时,可以提高测量的精确度,.若树木的实际高为
,试问
为多少时,
最大?





(1)若测得


(2)经过分析若干测得的数据后,大家一致认为适当调整标杆到树木的距离







某个体经营者把开始六个月试销A、B两种商品的逐月投资与所获纯利润列成下表:
该经营者准备下月投入12万元经营这两种产品,但不知投入A、B两种商品各多少才最合算.请你帮助制定一下资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大利润(结果保留两个有效数字).
投资A商品金额(万元) | 1 | 2 | 3 | 4 | 5 | 6 |
获纯利润(万元) | 0.65 | 1.39 | 1.85 | 2 | 1.84 | 1.40 |
投资B商品金额(万元) | 1 | 2 | 3 | 4 | 5 | 6 |
获纯利润(万元) | 0.25 | 0.49 | 0.76 | 1 | 1.26 | 1.51 |
该经营者准备下月投入12万元经营这两种产品,但不知投入A、B两种商品各多少才最合算.请你帮助制定一下资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大利润(结果保留两个有效数字).
建造一个容积为8m3、深为2m的长方体形状的无盖水池,已知池底和池壁的造价 别为100元/m2和60元/m2,总造价y (单位:元)关于底面一边长x (单位:m)的函数解析式为_______。
用长为18米的篱笆借助一墙角围成一个矩形
(如图所示),在点
处有一棵树(忽略树的直径)距两墙的距离分别为
米和
米,现需要将此树圈进去,设矩形
的面积为
(平方米),长
为
(米).

(1)设
,求
的解析式并指出其定义域;
(2)试求
的最小值
.









(1)设


(2)试求


闽越水镇是闽侯县打造闽都水乡文化特色小镇核心区,该小镇有一块1800平方米的矩形地块,开发商准备在中间挖出三个矩形池塘养闽侯特色金鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植柳树,形成柳中观鱼特色景观.假设池塘周围的基围宽均为2米,如图,设池塘所占的总面积为
平方米.

(1)试用
表示a及
;
(2)当
取何值时,才能使得
最大?并求出
的最大值.


(1)试用


(2)当



2018年是98九江长江抗洪胜利20周年,铭记历史,弘扬精神,众志成城,百折不挠,中国人民是不可战胜的.98特大洪灾可以说是天灾,也可以说是人祸,长江、黄河上游的森林几乎已经砍伐殆尽,长江区域生态系统遭到严重破坏.近年来,国家政府越来越重视生态系统的重建和维护,若已知国务院下拨一项专款100万,分别用于植绿护绿.处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金
(单位:万元)的函数M(单位:千元),
,处理污染项目五年内带来的生态收益可表示为投放资金
(单位:万元)的函数N(单位:千元),
.
(1)设分配给植绿护绿项目的资金为
(万元),则两个生态项目五年内带来的收益总和为
,写出
关于
的函数解析式和定义域;
(2)生态项目的投资开始利润薄弱,只有持之以恒,才能功在当代,利在千秋,试求出
的最大值,并求出此时对两个生态项目的投资分别为多少?




(1)设分配给植绿护绿项目的资金为




(2)生态项目的投资开始利润薄弱,只有持之以恒,才能功在当代,利在千秋,试求出

如图,
、
是海岸线
、
上的两个码头,
为海中一小岛,在水上旅游线
上.测得
,
,
到海岸线
、
的距离分别为
,
.

(1)求水上旅游线
的长;
(2)海中
,且
处的某试验产生的强水波圆
,生成
小时时的半径为
.若与此同时,一艘游轮以
小时的速度自码头
开往码头
,试研究强水波是否波及游轮的航行?














(1)求水上旅游线

(2)海中









某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.
A.6升 | B.8升 |
C.10升 | D.12升 |
国际上钻石的重量计量单位为克拉.已知某种钻石的价值(美元)与其重量(克拉)的平方成正比,且一颗重为3克拉的该钻石的价值为54 000美元.
(1)写出钻石的价值y关于钻石重量x的函数关系式;
(2)把一颗钻石切割成两颗钻石,若两颗钻石的重量分别为m克拉和n克拉,试求:当
为何值时,价值损失的百分率最大. (注:价值损失的百分率=
;在切割过程中的重量损耗忽略不计)
(1)写出钻石的价值y关于钻石重量x的函数关系式;
(2)把一颗钻石切割成两颗钻石,若两颗钻石的重量分别为m克拉和n克拉,试求:当

