刷题首页
题库
高中数学
题干
为了更好地了解鲸的生活习性,某动物保护组织在受伤的鲸身上安装了电子监测设备,从海岸线放归点
处把它放归大海,并沿海岸线由西到东不停地对其进行跟踪观测.在放归点
的正东方向有一观测站
,可以对鲸进行生活习性的详细观测.已知
,观测站
的观测半径为
.现以点
为坐标原点、以由西向东的海岸线所在直线为
轴建立平面直角坐标系,则可以测得鲸的行进路线近似的满足
.
(1)若测得鲸的行进路线上一点
,求
的值;
(2)在(1)问的条件下,问:
①当鲸运动到何处时,开始进入观测站
的观测区域内?(计算结果精确到0.1)
②当鲸运动到何处时,离观测站
距离最近(观测最便利)?(计算结果精确到0.1)
(参考数据:
)
上一题
下一题
0.99难度 解答题 更新时间:2019-01-07 03:09:55
答案(点此获取答案解析)
同类题1
海康威视数字技术股份有限公司在***“企业持续发展之基、市场制胜之道在于创新”的号召下,研制出了一种新产品。该公司试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图③是每件样品的销售利润与上市时间的关系.
(1)分别写出国外市场的日销售量
与上市时间
的关系及国内市场的日销售量
与上市时间
的关系;
(2)该产品上市后,问哪一天这家公司的日销售利润最大?最大是多少?
同类题2
(本小题满分14分)如图,有一景区的平面图是一半圆形,其中AB长为2km,C、D两点在半圆弧上,满足BC=C
A.设
.
(1)现要在景区内铺设一条观光道路,由线段AB、BC、CD和DA组成,则当θ为何值时,观光道路的总长
最长,并求
的最大值.
(2)若要在景区内种植鲜花,其中在
和
内种满鲜花,
在扇形
内种一半面积的鲜花,则当θ为何值时,鲜花种植面积S最大.
同类题3
某地区山体大面积滑坡,政府准备调运一批赈灾物资共装26辆车,从某市出发以
的速度匀速直达灾区,如果两地公路长400
km
,且为了防止山体再次坍塌,每两辆车的间距保持在
.(车长忽略不计)设物资全部运抵灾区的时间为
y
小时,请建立
y
关于每车平均时速
的函数关系式,并求出车辆速度为多少千米/小时,物资能最快送到灾区?
同类题4
某抛物线型拱桥水面宽度20
m
,拱顶离水面4
m
,现有一船宽9
m
,船在水面上高3
m
.
(1)建立适当平面直角坐标系,求拱桥所在抛物线标准方程;
(2)计算这条船能否从桥下通过.
同类题5
某公司为了实现2013年销售利润1 000万元的目标,准备制定一个激励销售人员的奖励方案:从销售利润达到10万元开始,按销售利润进行奖励,且奖金数额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金数额不超过5万元,同时奖金数额不超过销售利润的25%.现有三个奖励模型:y=0.025x,y=1.003
x
,y=
ln x+1,问其中是否有模型能完全符合公司的要求?请说明理由.
(参考数据:
,
,
)
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
建立拟合函数模型解决实际问题
直线与圆的实际应用