- 集合与常用逻辑用语
- 函数与导数
- + 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知某市最低工资标准为每月
元,为了解决该市房价过高的问题,政府计划对低收入的本市户籍居民购买第一套住房的,每月提供一定金额的贷款补贴,补贴规则:个人每月收入不高于
元的,对贷款进行补贴,补贴标准为:贷款月还款额
,其中
是一个与月工资收入有关的常数,且贷款月还款额不得高于
元,贷款月还款额高于
元的,只对
元部分进行补贴.高于
元部分不予补贴,已知月工资收入不高于
元时
.
(1)若某人工资为
元,贷款月还款额为
元,则他每月获得的贷款补贴是多少元?
(2)对于月工资收入不高于
元的贷款买房的居民中.若贷款月还款额均为
元,则实际月收入最高为多少元?(结果均保留整数位,均不考虑扣税问题)










(1)若某人工资为


(2)对于月工资收入不高于


《郑州市城市生活垃圾分类管理办法》已经政府常务会议审议通过,自2019年12月1日起施行.垃圾分类是对垃圾收集处置传统方式的改革,是对垃圾进行有效处置的一种科学管理方法.所谓垃圾其实都是资源,当你放错了位置时它才是垃圾.某企业在市科研部门的支持下进行研究,把厨余垃圾加工处理为一种可销售的产品.已知该企业每周的加工处理量最少为75吨,最多为100吨.周加工处理成本y(元)与周加工处理量x(吨)之间的函数关系可近似地表示为
,且每加工处理一吨厨余垃圾得到的产品售价为16元.
(Ⅰ)该企业每周加工处理量为多少吨时,才能使每吨产品的平均加工处理成本最低?
(Ⅱ)该企业每周能否获利?如果获利,求出利润的最大值;如果不获利,则需要市政府至少补贴多少元才能使该企业不亏损?

(Ⅰ)该企业每周加工处理量为多少吨时,才能使每吨产品的平均加工处理成本最低?
(Ⅱ)该企业每周能否获利?如果获利,求出利润的最大值;如果不获利,则需要市政府至少补贴多少元才能使该企业不亏损?
某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元,该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元,假设商店每月购进这种商品m件,且当月销完,你估计哪个月份盈利最大?
据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k(k>0).现已知相距18km的A,B两家化工厂(污染源)的污染强度分别为a,b,它们连线上任意一点C处的污染指数y等于两化工厂对该处的污染指数之和.设AC=x(km).
(1)试将y表示为x的函数;
(2)若a=1,且x=6时,y取得最小值,试求b的值.
(1)试将y表示为x的函数;
(2)若a=1,且x=6时,y取得最小值,试求b的值.
为纪念重庆黑山谷晋升国家5A级景区五周年,特发行黑山谷纪念邮票,从2017年11月1日起开始上市.通过市场调查,得到该纪念邮票在一周内每1张的市场价y(单位:元)与上市时间x(单位:天)的数据如下:
(Ⅰ)分析上表数据,说明黑山谷纪念邮票的市场价y(单位:元)与上市时间x(单位:天)的变化关系,并判断y与x满足下列哪种函数关系,①一次函数;②二次函数;③对数函数,并求出函数的解析式;
(Ⅱ)利用你选取的函数,求黑山谷纪念邮票市场价最低时的上市天数及最低的价格.
上市时间x天 | 1 | 2 | 6 |
市场价y元 | 5 | 2 | 10 |
(Ⅰ)分析上表数据,说明黑山谷纪念邮票的市场价y(单位:元)与上市时间x(单位:天)的变化关系,并判断y与x满足下列哪种函数关系,①一次函数;②二次函数;③对数函数,并求出函数的解析式;
(Ⅱ)利用你选取的函数,求黑山谷纪念邮票市场价最低时的上市天数及最低的价格.
下表表示的是某款车的车速与刹车距离的关系,试分别就
,
,
三种函数关系建立数学模型,并探讨最佳模拟,根据最佳模拟求车速为120km/h时的刹车距离.



车速/(km/h) | 10 | 15 | 30 | 40 | 50 |
刹车距离/m | 4 | 7 | 12 | 18 | 25 |
车速/((km/h) | 60 | 70 | 80 | 90 | 100 |
刹车距离/m | 34 | 43 | 54 | 66 | 80 |
某厂印刷某图书总成本y(元)与图书日印量x(本)的函数解析式为y=5x+3000,而图书出厂价格为每本10元,则该厂为了不亏本,日印图书至少为( )
A.200本 | B.400本 | C.600本 | D.800本 |
国际上通常用恩格尔系数衡量一个国家和地区人民生活水平的状况,它的计算公式为
(
代表人均食品支出总额,
代表人均个人消费支出总额)且
,各种类型的家庭标准如下表:
张先生居住区
年比
年食品支出下降
,张先生家在
年购买食品和
年完全相同的情况下人均少支出
元,则张先生家
年属于( )




家庭类型 | 贫困 | 温饱 | 小康 | 富裕 |
![]() | ![]() | ![]() | ![]() | ![]() |
张先生居住区







A.贫困 | B.温饱 | C.小康 | D.富裕 |
汽车“定速巡航”技术是用于控制汽车的定速行驶,当汽车被设定为定速巡航状态时,电脑根据道路状况和汽车的行驶阻力自动控制供油量,使汽车始终保持在所设定的车速行驶,而无需司机操纵油门,从而减轻疲劳,促进安全,节省燃料.某汽车公司为测量某型号汽车定速巡航状态下的油耗情况,选择一段长度为240km的平坦高速路段进行测试.经多次测试得到一辆汽车每小时耗油量F(单位:L)与速度v(单位:km/h)(
)的下列数据:
为了描述汽车每小时耗油量与速度的关系,现有以下三种函数模型供选择:
,
,
.
(1)请选出你认为最符合实际的函数模型,并求出相应的函数解析式.
(2)这辆车在该测试路段上以什么速度行驶才能使总耗油量最少?

v | 0 | 40 | 60 | 80 | 120 |
F | 0 | ![]() | ![]() | 10 | 20 |
为了描述汽车每小时耗油量与速度的关系,现有以下三种函数模型供选择:



(1)请选出你认为最符合实际的函数模型,并求出相应的函数解析式.
(2)这辆车在该测试路段上以什么速度行驶才能使总耗油量最少?
某公司生产的某批产品的销售量
万件(生产量与销售量相等)与促销费用
万元满足
(其中
,
为正常数).已知生产该产品还需投入成本
万元(不含促销费用),产品的销售价格定为
元
件.
(1)将该产品的利润
万元表示为促销费用
万元的函数;
(2)促销费用投入多少万元时,该公司的利润最大?








(1)将该产品的利润


(2)促销费用投入多少万元时,该公司的利润最大?