- 集合与常用逻辑用语
- 函数与导数
- + 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某银行柜台异地跨行转账手续费的收费标准为转账金额的
,且最低1元
笔,最高50元
笔,王杰需要在该银行柜台进行一笔异地跨行转账的业务.
(1)若王杰转账的金额为x元,手续费为y元,请将y表示为x的函数;
(2)若王杰转账的金额为
元,他支付的手续费大于5元且小于50元,求t的取值范围.



(1)若王杰转账的金额为x元,手续费为y元,请将y表示为x的函数;
(2)若王杰转账的金额为

2018年
年月某市邮政快递业务量完成件数较2017年月
月同比增长
,如图为该市2017年
月邮政快递业务量柱状图及2018年
月邮政快递业务量饼图,根据统计图,解决下列问题

年
月该市邮政快递同城业务量完成件数与2017年
月相比是有所增大还是有所减少,并计算,2018年
月该市邮政快递国际及港澳台业务量同比增长率;
若年平均每件快递的盈利如表所示:
估计该市邮政快递在2018年
月的盈利是多少?











快递类型 | 同城 | 异地 | 国际及港澳台 |
盈利![]() ![]() ![]() | ![]() | 5 | 25 |
估计该市邮政快递在2018年

如图,某公园摩天轮的半径为40m,点O距地面的高度为50m,摩天轮做匀速转动,每10min转一圈,摩天轮上的点P的起始位置在最低点处.

已知在时刻
时点P距离地面的高度为
,其中
,
,
,求
的解析式;
在摩天轮转动的一圈内,有多长时间点P距离地面超过70m?









某种树木栽种时高度为A米
为常数
,记栽种x年后的高度为
,经研究发现,
近似地满足
,
其中
,a,b为常数,
,已知
,栽种三年后该树木的高度为栽种时高度的3倍.
(Ⅰ)求a,b的值;
(Ⅱ)求栽种多少年后,该树木的高度将不低于栽种时的5倍
参考数据:
,
.









(Ⅰ)求a,b的值;
(Ⅱ)求栽种多少年后,该树木的高度将不低于栽种时的5倍



建造一间地面面积为12
的背面靠墙的猪圈, 底面为长方形的猪圈正面的造价为120元/
, 侧面的造价为80元/
, 屋顶造价为1120元. 如果墙高3
, 且不计猪圈背面的费用, 问怎样设计能使猪圈的总造价最低, 最低总造价是多少元?




著名英国数学和物理学家IssacNewton(1643年-1727年)曾提出了物质在常温环境下温度变化的冷却模型.把物体放在冷空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,tmin后物体温度θ℃,可由公式θ=θ0+(θ1-θ0)e-kt(e为自然对数的底数)得到,这里k是一个随着物体与空气的接触状况而定的正的常数.现将一个原来温度为62℃的物体放在15℃的空气中冷却,1min以后物体的温度是52℃.
(Ⅰ)求k的值(精确到0.01);
(Ⅱ)该物体从原来的62℃开始冷却多少min后温度是32℃?
(参考数据:ln
≈-0.24,ln
≈-0.55,ln
≈-1.02)
(Ⅰ)求k的值(精确到0.01);
(Ⅱ)该物体从原来的62℃开始冷却多少min后温度是32℃?
(参考数据:ln



已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:
.
(1)如果
,求经过多少时间,物体的温度为5摄氏度;
(2)若物体的温度总不低于2摄氏度,求m的取值范围.


(1)如果

(2)若物体的温度总不低于2摄氏度,求m的取值范围.
某电力公司在工程招标中是根据技术、商务、报价三项评分标准进行综合评分的,按照综合得分的高低进行综合排序,综合排序高者中标.
分值权重表如下:
技术标、商务标基本都是由公司的技术、资质、资信等实力来决定的.报价表则相对灵活,报价标的评分方法是:基准价的基准分是68分,若报价每高于基准价1%,则在基准分的基础上扣0.8分,最低得分48分;若报价每低于基准价1%,则在基准分的基础上加0.8分,最高得分为80分.若报价低于基准价15%以上(不含15%)每再低1%,在80分在基础上扣0.8分.
在某次招标中,若基准价为1000(万元).甲、乙两公司综合得分如下表:
甲公司报价为1100(万元),乙公司的报价为800(万元)则甲,乙公司的综合得分,分别是( )
分值权重表如下:
总分 | 技术 | 商务 | 报价 |
100% | 50% | 10% | 40% |
技术标、商务标基本都是由公司的技术、资质、资信等实力来决定的.报价表则相对灵活,报价标的评分方法是:基准价的基准分是68分,若报价每高于基准价1%,则在基准分的基础上扣0.8分,最低得分48分;若报价每低于基准价1%,则在基准分的基础上加0.8分,最高得分为80分.若报价低于基准价15%以上(不含15%)每再低1%,在80分在基础上扣0.8分.
在某次招标中,若基准价为1000(万元).甲、乙两公司综合得分如下表:
公司 | 技术 | 商务 | 报价 |
甲 | 80分 | 90分 | A甲分 |
乙 | 70分 | 100分 | A乙分 |
甲公司报价为1100(万元),乙公司的报价为800(万元)则甲,乙公司的综合得分,分别是( )
A.73,75.4 | B.73,80 | C.74.6,76 | D.74.6,75.4 |
据调查:人类在能源利用与森林砍伐中使CO2浓度增加.据测,2015年,2016年,2017年大气中的CO2浓度分别比2014年增加了1个单位,3个单位,6个单位.若用一个函数模拟每年CO2浓度增加的单位数y与年份增加数x的关系,模拟函数可选用二次函数
(其中
为常数)或函数
(其中a,b,c为常数),又知2018年大气中的CO2浓度比2014年增加了16.5个单位,请问用以上哪个函数作模拟函数较好?



物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是
,经过一段时间
后的温度是
,则有
,其中
表示环境温度,
称为半衰期且
.现有一杯用
热水冲的速溶咖啡,放置在
的房间中
分钟,求此时咖啡的温度是多少度?如果要降温到
,共需要多长时间?(
,结果精确到
)












