- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- + 函数模型的应用实例
- 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某购物网站在2017年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为( )
A.1 | B.2 |
C.3 | D.4 |
衣柜里的樟脑丸,随着时间会挥发,从而体积缩小,刚放入的新樟脑丸体积为a,经过t天后樟脑丸的体积V(t)与天数t的关系式为V(t)=a·e–kt,若新樟脑丸经过80天后,体积变为
a,则函数V(t)的解析式为________.

经测算,某型号汽车在匀速行驶过程中每小时耗油量
(升
与速度
(千米
每小时)
的关系可近似表示为:
(1)该型号汽车速度为多少时,可使得每小时耗油量最低?
(2)已知
,
两地相距120公里,假定该型号汽车匀速从
地驶向
地,则汽车速度为多少时总耗油量最少?






(1)该型号汽车速度为多少时,可使得每小时耗油量最低?
(2)已知




某公司拟投资100万元,有两种获利的方案可供选择.第一种方案是年利率为
,按单利的方式计算利息,5年后收回本金和利息;第二种方案是年利率为
,按复利的方式计算利息,5年后收回本金和利息,哪一种投资更有利?5年后,这种投资比另一种投资可多得利息多少万元?(不计利息税,参考数据:
,
,
)





某学校要建造一个面积为
平方米的运动场.如图,运动场是由一个矩形
和分别以
为直径的两个半圆组成.跑道是一条宽
米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为
元,草皮每平方米造价为
元.
(1)设半圆的半径
(米),试建立塑胶跑道面积
(平方米)与
的函数关系
,并求其定义域;
(2)由于条件限制
,问当
取何值时,运动场造价最低?(
取
)






(1)设半圆的半径




(2)由于条件限制





(本小题满分14分)现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB交弧AB于点E、F,且BD = AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的三种的养殖区域.若OA=1km,
,
.

(1)求区域Ⅱ的总面积;
(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元.试问当
为多少时,年总收入最大?



(1)求区域Ⅱ的总面积;
(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元.试问当

某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.
注:“累计里程“指汽车从出厂开始累计行驶的路程
在这段时间内,该车每
千米平均耗油量为( )
加油时间 | 加油量(升) | 加油时的累计里程(千米) |
![]() ![]() ![]() | ![]() | ![]() |
![]() ![]() ![]() | ![]() | ![]() |
注:“累计里程“指汽车从出厂开始累计行驶的路程
在这段时间内,该车每

A.![]() | B.![]() | C.![]() | D.![]() |
(本小题满分14分)2014年8月以“分享青春,共筑未来”为口号的青奥会在江苏南京举行,
为此某商店经销一种青奥会纪念徽章,每枚徽章的成本为30元,并且每卖出一枚徽章需向相关部门上缴
元(
为常数,
),设每枚徽章的售价为
元(35
).根据市场调查,日销售量与
(
为自然对数的底数)成反比例.已知当每枚徽章的售价为40元时,日销售量为10枚.
(1)求该商店的日利润
与每枚徽章的售价
的函数关系式;
(2)当每枚徽章的售价为多少元时,该商店的日利润
最大?并求出
的最大值.
为此某商店经销一种青奥会纪念徽章,每枚徽章的成本为30元,并且每卖出一枚徽章需向相关部门上缴







(1)求该商店的日利润


(2)当每枚徽章的售价为多少元时,该商店的日利润


(本小题满分14分)如图,有一景区的平面图是一半圆形,其中AB长为2km,C、D两点在半圆弧上,满足BC=C

(1)现要在景区内铺设一条观光道路,由线段AB、BC、CD和DA组成,则当θ为何值时,观光道路的总长
最长,并求
的最大值.
(2)若要在景区内种植鲜花,其中在
和
内种满鲜花,
在扇形
内种一半面积的鲜花,则当θ为何值时,鲜花种植面积S最大.
A.设![]() |

(1)现要在景区内铺设一条观光道路,由线段AB、BC、CD和DA组成,则当θ为何值时,观光道路的总长


(2)若要在景区内种植鲜花,其中在


在扇形
