- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- + 常见的函数模型(2)——指数、对数、幂函数
- 指数函数模型的应用(2)
- 对数函数模型的应用(2)
- 幂函数模型的应用
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
经测试,光线每通过一块特殊的玻璃板,其强度将损失10%,已知原来的光线强度为a,设通过x块这样的玻璃板后的光线强度为y.
(1) 试写出y与x的函数关系式;
(2) 通过多少块玻璃板后,光线强度削弱到原来的
以下?
(1) 试写出y与x的函数关系式;
(2) 通过多少块玻璃板后,光线强度削弱到原来的

某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )
A.略有盈利 |
B.略有亏损 |
C.没有盈利也没有亏损 |
D.无法判断盈亏情况 |
某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )
A.略有盈利 |
B.略有亏损 |
C.没有盈利也没有亏损 |
D.无法判断盈亏情况 |
某地区发生里氏8.0级特大地震.地震专家对发生的余震进行了监测,记录的部分数据如下表:
注:地震强度是指地震时释放的能量.
地震强度(x)和震级(y)的模拟函数关系可以选用y=alg x+b(其中a,b为常数).利用散点图(如图)可知a的值等于________.(取lg 2=0.3进行计算)
强度(J) | 1.6×1019 | 3.2×1019 | 4.5×1019 | 6.4×1019 |
震级(里氏) | 5.0 | 5.2 | 5.3 | 5.4 |
注:地震强度是指地震时释放的能量.
地震强度(x)和震级(y)的模拟函数关系可以选用y=alg x+b(其中a,b为常数).利用散点图(如图)可知a的值等于________.(取lg 2=0.3进行计算)

一种专门占据内存的计算机病毒,开机时占据内存2 KB,然后每3 min自身复制一次,复制后所占据内存是原来的2倍,那么开机后,该病毒占据64 MB(1 MB=210 KB)内存需要经过的时间为多少分钟?
红豆生南国,春来发几枝?如图给出了红豆生长时间t(月)与枝数y的散点图,那么红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?( )
A.y=2t | B.y=log2t | C.y=2t | D.y=t2 |
某公司从1999年的年产值100万元,增加到10年后2009年的500万元,如果每年产值增长率相同,则每年的平均增长率是多少?(ln(1+x)≈x,lg2=0.3,ln10=2.30)
(12分)光线每通过一块玻璃其强度要减少10%,用至少多少块这样的玻璃板重叠起来,能使通过它们的光线在原强度的
以下?(lg3=0.477 1)

在不考虑空气阻力的情况下,火箭的最大速度v(米/秒)和燃料的质量M(千克)、火箭(除燃料外)的质量m(千克)的函数关系式是v=2 000·ln.当燃料质量是火箭质量的