- 集合与常用逻辑用语
- 函数与导数
- 利用二次函数模型解决实际问题
- + 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
表示一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:
②骑自行车者是变速运动,骑摩托车者是匀速运动;
③骑摩托车者在出发1.5 h后追上了骑自行车者;
④骑摩托车者在出发1.5 h后与骑自行车者速度一样.
其中,正确信息的序号是________.
②骑自行车者是变速运动,骑摩托车者是匀速运动;
③骑摩托车者在出发1.5 h后追上了骑自行车者;
④骑摩托车者在出发1.5 h后与骑自行车者速度一样.
其中,正确信息的序号是________.
2018年10月24日,世界上最长的跨海大桥一港珠澳大桥正式通车
在一般情况下,大桥上的车流速度
单位:千米
时
是车流密度
单位:辆
千米
的函数
当桥上的车流密度达到220辆
千米时,将造成堵塞,此时车流速度为0;当车流密度不超过20辆
千米时,车流速度为100千米
时,研究表明:当
时,车流速度v是车流密度x的一次函数.
Ⅰ
当
时,求函数
的表达式;
Ⅱ
当车流密度x为多大时,车流量
单位时间内通过桥上某观测点的车辆数,单位:辆
时
可以达到最大?并求出最大值.





















某旅游景点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.规定:每辆自行车的日租金不超过20元,每辆自行车的日租金
元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用
表示出租所有自行车的日净收入(即一日中出租所以自行车的总收入减去管理费用后的所得).
(1)求函数
的解析式及定义域;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?


(1)求函数

(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?
某厂推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元,根据统计数据,总收益P(单位:元)与月产量x(单位:件)满足
(注:总收益=总成本+利润)
(1)请将利润y(单位:元)表示成关于月产量x(单位:件)的函数;
(2)当月产量为多少时,利润最大?最大利润是多少?

(1)请将利润y(单位:元)表示成关于月产量x(单位:件)的函数;
(2)当月产量为多少时,利润最大?最大利润是多少?
松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利. 已知某条线路通车后,电车的发车时间间隔
(单位:分钟)满足
. 经市场调研测算,电车载客量与发车时间间隔
相关,当
时电车为满载状态,载客量为
人,当
时,载客量会减少,减少的人数与
的平方成正比,且发车时间间隔为
分钟时的载客量为
人.记电车载客量为
.
(1)求
的表达式,并求当发车时间间隔为
分钟时,电车的载客量;
(2)若该线路每分钟的净收益为
(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?










(1)求


(2)若该线路每分钟的净收益为

我国加入WTO时,据达成的协议,若干年内某产品关税与市场供应量
的关系允许近似满足
(其中,
为关税的税率,且
,
为市场价格,
、
为正常数),当
时,市场供应量曲线如图:

⑴根据图象求
的值;
⑵记市场需求量为
,它近似满足
,当
时,市场价格称为市场平衡价格,当市场平衡价
时,求税率的最小值。









⑴根据图象求

⑵记市场需求量为




某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值
(
值越大产品的性能越好)与这种新合金材料的含量
(单位:克)的关系:当
时,
是
的二次函数;当
时,
.测得部分数据如表所示.
(1)求
关于
的函数关系式;
(2)求该新合金材料的含量
为何值时产品的性能达到最佳.








![]() | 0 | 2 | 6 | 10 | … |
![]() | -4 | 8 | 8 | ![]() | … |
(1)求


(2)求该新合金材料的含量

某电影院共有1000个座位,票价不分等次,根据影院的经营经验,当每张票价不超过10元时,票可全售出;当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院定一个合适的票价,需符合的基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②电影院放一场电影的成本费用支出为5750元,票房的收入必须高于成本支出,用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入)
问:
(1)把y表示为x的函数,并求其定义域;
(2)试问在符合基本条件的前提下,票价定为多少时,放映一场的净收入最多?
问:
(1)把y表示为x的函数,并求其定义域;
(2)试问在符合基本条件的前提下,票价定为多少时,放映一场的净收入最多?
(2015年苏州18)根据市场调查,某种新产品投放市场的30天内,每件销售价格P (元)与时间t (天
)的关系满足下图,日销量Q (件)与时间t(天)之间的关系是
.
(1)写出该产品每件销售价格P与时间t的函数关系式;
(2)在这30天内,哪一天的日销售金额最大?
(日销量金额=每件产品销售价格×日销量)


(1)写出该产品每件销售价格P与时间t的函数关系式;
(2)在这30天内,哪一天的日销售金额最大?
(日销量金额=每件产品销售价格×日销量)

经市场调研,某超市一种玩具在过去一个月(按30天)的销售量(件)与价格(元)均为时间
(天)的函数,且销售量近似满足
,价格近似满足
。
(1)试写出该种玩具的日销售额
与时间
(
,
)的函数关系式;
(2)求该种玩具的日销售额
的最大值。



(1)试写出该种玩具的日销售额




(2)求该种玩具的日销售额
