- 集合与常用逻辑用语
- 函数与导数
- 利用二次函数模型解决实际问题
- + 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某种新药服用
小时后血液中的残留量为
毫克,如图所示为函数
的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为





A.午10:00 | B.中午12:00 |
C.下午4:00 | D.下午6:00 |
(2014年苏州B19)在平面直角坐标系
中,将从点
出发沿纵、横方向到达点
的任一路径称为
到
的一条“折线路径”,所有“折线路径”中长度最小的称为
到
的“折线距离” .如图所示的路径
与路径
都是
到
的“折线路径”.某地有三个居民区分别位于平面
内三点
,现计划在这个平面上某一点
处修建一个超市.
(1)请写出点
到居民区
的“折线距离”
的表达式(用
表示,不要求证明);
(2)为了方便居民,请确定点
的位置,使其到三个居民区的“折线距离”之和最小.














(1)请写出点




(2)为了方便居民,请确定点


在某单位的职工食堂中,食堂每天以
元/个的价格从面包店购进面包,然后以
元/个的价格出售.如果当天卖不完,剩下的面包以
元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了80个面包,以
(单位:个,
)表示面包的需求量,
(单位:元)表示利润.

(1)求
关于
的函数解析式;
(2)根据直方图估计利润
不少于
元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量
,则取
,且
的概率等于需求量落入
的频率),求
的分布列和数学期望.







(1)求


(2)根据直方图估计利润


(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量





某单位组织职工去某地参观学习,需包车前往,甲车队说:“如果领队买一张全票,其余人可享受7折优惠。”乙车队说:“你们属于团体票,按原价的7.5折优惠。”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠。
某公司研发出一款新产品,批量生产前先同时在甲、乙两城市销售30天进行市场调查.调查结果发现:甲城市的日销售量
与天数
的对应关系服从图①所示的函数关系;乙城市的日销售量
与天数
的对应关系服从图②所示的函数关系;每件产品的销售利润
与天数
的对应关系服从图③所示的函数关系,图①是抛物线的一部分.

(Ⅰ)设该产品的销售时间为
,日销售量利润为
,求
的解析式;
(Ⅱ)若在
的销售中,日销售利润至少有一天超过
万元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.









(Ⅰ)设该产品的销售时间为



(Ⅱ)若在


纳税是每个公民应尽的义务,从事经营活动的有关部门必须向政府税务部门交纳一定的营业税.某地区税务部门对餐饮业营业税的征收标准如下表:
(1)写出每月征收的税金
(元)与营业额
(元)之间的函数关系式;
(2)某饭店
月份的营业额是
元,这个月该饭店应缴纳税金多少?
每月的营业额 | 征税情况 |
![]() ![]() | ![]() |
超过![]() | ![]() ![]() ![]() 超过部分的税率为 ![]() |
(1)写出每月征收的税金


(2)某饭店


某工厂生产某种产品的固定成本(固定投入)为
万元,已知生产
件这样的产品需要在增加可变成本(另增加投入)
万元,根据市场调研分析,销售的收入为
(万元),,其中
是产品售出的数量(单位:百件),假设此种产品的需求量最多为
件,设该工厂年利润为
万元.
(1)将年利润表示为年产量的函数;
(2)求年利润的最大值.







(1)将年利润表示为年产量的函数;
(2)求年利润的最大值.
某校高二(1)班学生为了筹措经费给班上购买课外读物,班委会成立了一个社会实践小组,决定利用暑假八月份(30天计算)轮流换班去销售一种时令水果.在这30天内每斤水果的收入
(元)与时间
(天)的部分数据如下表所示,已知日销售
(斤)与时间
(天)满足一次函数关系.
(1)根据提供的图象和表格,下厨每斤水果的收入
(元)与时间
(天)所满足的函数关系式及日销售量
(斤)与时间
(天)的一次函数关系;
(2)用
(元)表示销售水果的日收入,写出
与
的函数关系式,并求这30天中第几天日收入最大,最大值为多少元?




(1)根据提供的图象和表格,下厨每斤水果的收入




(2)用




我国西部某省4A级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数
与第x天近似地满足
(千人),且参观民俗文化村的游客人均消费
近似地满足
(元).
(1)求该村的第x天的旅游收入
(单位千元,1≤x≤30,
)的函数关系;
(2)若以最低日收入的20%作为每一天的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?




(1)求该村的第x天的旅游收入


(2)若以最低日收入的20%作为每一天的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?
经市场调查,某商品每吨的价格为x(2<x<14)元时,该商品的月供给量为y1吨,y1=ax﹣16(a≥8);月需求量为y2吨
.当该商品的需求量不小于供给量时,销售量等于供给量;当该商品的需求量小于供给量时,销售量等于需求量.该商品的月销售额f(x)等于月销售量与价格的乘积.
(1)若a=32,问商品的价格为多少元时,该商品的月销售额f(x)最大?
(2)记需求量与供给量相等时的价格为均衡价格.若该商品的均衡价格不低于每吨10元,求实数a的取值范围.

(1)若a=32,问商品的价格为多少元时,该商品的月销售额f(x)最大?
(2)记需求量与供给量相等时的价格为均衡价格.若该商品的均衡价格不低于每吨10元,求实数a的取值范围.