- 集合与常用逻辑用语
- 函数与导数
- + 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.
(Ⅰ)如果增加




(Ⅱ)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?
某公司打算在甲、乙两地促销同一种汽车,已知两地的销售利润(单位:万元)与销售量(单位:辆)之间的关系分别为
和
,其中
为销售量(
).公司计划在这两地共销售15辆汽车.
(1)设甲地销售量为
,试写出公司能获得的总利润
与
之间的函数关系;
(2)求公司能获得的最大利润.




(1)设甲地销售量为



(2)求公司能获得的最大利润.
某公园要建造一个直径为20m的圆形喷水池,计划在喷水池的周边靠近水面的位置安装一圈喷水头,使喷出的水柱在离池中心2m处达到最高,最高高度为8m.另外还要在喷水池的中心设计一个装饰物,使各方向喷来的水柱在此处汇合,则这个装饰物的高度应该为()
A.5m | B.3.5m | C.5.5m | D.7.5m |
为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本
(万元)与处理量
(吨)之间的函数关系可近似的表示为:
,且每处理一吨废弃物可得价值为
万元的某种产品,同时获得国家补贴
万元.
(1)当
时,判断该项举措能否获利?如果能获利,求出最大利润;
如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少?





(1)当

如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少?
某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,
(
为圆柱的高,
为球的半径,
).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为
千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为
千元.
(1)写出
关于
的函数表达式,并求该函数的定义域;
(2)求该储油罐的建造费用最小时的
的值.






(1)写出


(2)求该储油罐的建造费用最小时的


有一隧道,内设双行线公路,同方向有两个车道(共有四个车道),每个车道宽为3m,此隧道的截面由一个长方形和一抛物线构成,如图所示。为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少为
,靠近中轴线的车道为快车道,两侧的车道为慢车道,则车辆通过隧道时,慢车道的限制高度为______________.(精确到
)



某地区的农产品
第
天
的销售价格
(元/百斤),一农户在第
天
农产品
的销售量
(百斤)
(1)求该农户在第
天销售农产品
的收入;
(2)问这
天中该农户在哪一天的销售收入最大?








(1)求该农户在第


(2)问这

某建筑工地在一块长
米,宽
米的矩形地块
上施工,规划建设占地如图中矩形ABCD的学生公寓,要求顶点C在地块的对角线MN上,B,D分别在边AM,AN上,假设AB长度为
米.

(1)要使矩形学生公寓ABCD的面积不小于144平方米,AB的长度应在什么范围?
(2)长度AB和宽度AD分别为多少米时矩形学生公寓ABCD的面积最大?最大值是多少平方米?





(1)要使矩形学生公寓ABCD的面积不小于144平方米,AB的长度应在什么范围?
(2)长度AB和宽度AD分别为多少米时矩形学生公寓ABCD的面积最大?最大值是多少平方米?