- 集合与常用逻辑用语
- 函数与导数
- + 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知:某租赁公司出租同一型号的设备40套,当每套月租金为270元时,恰好全部租出.在此基础上,每套月租金每增加10元,就少租出1套设备.而未租出的设备每月需支付各种费用每套20元.设每套设备实际月租金为x元(x⩾270元),月收益为y元(总收益=设备租金收入−未租出设备费用)
(1)求y与x的函数关系式;
(2)当x为何值时,月收益最大?最大值是多少?
(1)求y与x的函数关系式;
(2)当x为何值时,月收益最大?最大值是多少?
某造船公司年造船量是20艘,已知造船
艘的产值函数为
(单位:万元),成本函数为
(单位:万元),又在经济学中,函数
的边际函数
定义为
.
(Ⅰ)求利润函数
及边际利润函数
;(提示:利润=产值-成本)
(Ⅱ)问年造船量安排多少艘时,可使公司造船的年利润最大?
(Ⅲ)求边际利润函数
单调递减时
的取值范围.






(Ⅰ)求利润函数


(Ⅱ)问年造船量安排多少艘时,可使公司造船的年利润最大?
(Ⅲ)求边际利润函数


某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元,又知总收入k是单位产品数Q的函数,
,则总利润
的最大值是________


有一批材料可以建成200 m的围墙,如果用此材料 在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),求围成的矩形最大面积.(围墙厚度不计)

某公司有价值
万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,从而提高产品附加值,改造需要投入,假设附加值
万元与技术改造投入
万元之间的关系满足:①
与
和
的乘积成正比;②
时,
;③
,其中
为常数,且
.
(Ⅰ)设
,求
表达式,并求
的定义域;
(Ⅱ)求出附加值
的最大值,并求出此时的技术改造投入.











(Ⅰ)设



(Ⅱ)求出附加值

2008年北京奥运会中国跳水梦之队取得了辉煌的成绩.据科学测算,跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动轨迹(如图所示)是一经过坐标原点的抛物线(图中标出数字为已知条件),且在跳某个规定动作时,正常情况下运动员在空中的最高点距水面
米,入水处距池边4米,同时运动员在距水面5米或5米以上时,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.

(Ⅰ)求抛物线的解析式;
(Ⅱ)某运动员按(1)中抛物线运行,要使得此次跳水成功,他在空中调整好入水姿势时,距池边的水平距离至多应为多大?


(Ⅰ)求抛物线的解析式;
(Ⅱ)某运动员按(1)中抛物线运行,要使得此次跳水成功,他在空中调整好入水姿势时,距池边的水平距离至多应为多大?
在矩形ABCD中,已知
,在AB、AD、CD、CB上分别截取AE、AH、CG、CF都等于
,
(1)将四边形EFGH的面积S表示成
的函数,并写出函数的定义域
(2)当
为何值时,四边形EFGH的面积最大?并求出最大面积


(1)将四边形EFGH的面积S表示成

(2)当


某商店以6元
千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第
天的总销量
(千克)与
的关系为
;乙级干果从开始销售至销售的第
天的总销量
(千克)与
的关系为
,且乙级干果的前三天的销售量的情况见下表:
(1)求
、
的值;
(2)若甲级干果与乙级干果分别以8元
千克和6元
千克的零售价出售,则卖完这批干果获得的毛利润是多少元?
(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?
(说明:毛利润
销售总金额
进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)









![]() | 1 | 2 | 3 |
![]() | 21 | 44 | 69 |
(1)求


(2)若甲级干果与乙级干果分别以8元


(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?
(说明:毛利润


一个人以6米/秒的速度去追赶停在交通灯前的的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为
米,那么,此人()

A.可在7秒内追上汽车 |
B.可在9秒内追上汽车 |
C.不能追上汽车,但其间最近距离为14米 |
D.不能追上汽车,但其间最近距离为7米 |