- 集合与常用逻辑用语
- 函数与导数
- + 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品
(百台),其总成本为G(
)(万元),其中固定成本为
万元,并且每生产
百台的生产成本为
万元(总成本 = 固定成本 + 生产成本);销售收入R(
)(万元)满足:
,假定该产品产销平衡,那么根据上述统计规律:
(Ⅰ)要使工厂有赢利,产量
应控制在什么范围?
(Ⅱ)工厂生产多少台产品时,可使赢利最多?







(Ⅰ)要使工厂有赢利,产量

(Ⅱ)工厂生产多少台产品时,可使赢利最多?
某轮船公司年初以200万元购进一艘轮船,以每年40万元的价格出租给海运公司.轮船公司负责轮船的维护,第一年维护费为4万元,随着轮船的使用与磨损,以后每年的维护费比上一年多2万元,同时该轮船第
年末可以以
万元的价格出售.
(1)写出轮船公司到第
年末所得总利润
万元关于
的函数解析式,并求
的最大值;
(2)为使轮船公司年平均利润最大,轮船公司应在第几年末出售轮船?


(1)写出轮船公司到第




(2)为使轮船公司年平均利润最大,轮船公司应在第几年末出售轮船?
吾悦商厦四面的万达公寓拥有套房400间,当每套房的月租金为600元时,可全部租出,当每套房的月租金每增加5元时,未租出的套房将会增加2间,租出的套房每间每月需要管理、维护费等75元,未租出的套房每间每月需要物业、维护费等25元.
(1)当每套房的月租金定为800元时,能租出多少套房?
(2)当每套房的月租金定为多少元时,万达公寓的月收益最大?此时最大年收益是多少?
(1)当每套房的月租金定为800元时,能租出多少套房?
(2)当每套房的月租金定为多少元时,万达公寓的月收益最大?此时最大年收益是多少?
商品的销售价格与销售量密切相关,为更精准地为商品确定最终售价,商家对商品A按以下单价进行试售,得到如下数据:
(1)求销量y关于x的线性回归方程;
(2)预计今后的销售中,销量与单价服从(1)中的线性回归方程,已知每件商品A的成本是10元,为了获得最大利润,商品A的单价应定为多少元?(结果保留整数)
(附:
,
.(15×60+16×58+17×55+18×53+19×49=4648,152+162+172+182+192=1455)
单价x(元) | 15 | 16 | 17 | 18 | 19 |
销量y(件) | 60 | 58 | 55 | 53 | 49 |
(1)求销量y关于x的线性回归方程;
(2)预计今后的销售中,销量与单价服从(1)中的线性回归方程,已知每件商品A的成本是10元,为了获得最大利润,商品A的单价应定为多少元?(结果保留整数)
(附:


某民营企业生产A,B两种产品,根据市场调查与预测,A产品的利润y与投资x成正比,其关系如图甲,B产品的利润y与投资x的算术平方根成正比,其关系如图乙
注:利润与投资单位为万元
分别将A,B两种产品的利润y表示为投资x的函数关系式;
该企业已筹集到10万元资金,并全部投入A,B两种产品的生产
问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少万元?






旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为15000元.旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团的人数不超过35人时,飞机票每张收费800元;若旅游团的人数多于35人,则给予优惠,每多1人,机票费每张减少10元,但旅游团的人数最多有60人.设旅行团的人数为
人,飞机票价格为
元,旅行社的利润为
元.
(1)写出飞机票价格
元与旅行团人数
之间的函数关系式;
(2)当旅游团的人数
为多少时,旅行社可获得最大利润?求出最大利润.



(1)写出飞机票价格


(2)当旅游团的人数

某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品
(百台),其总成本为
(万元),其中固定成本为
万元,并且每生产
百台的生产成本为
万元(总成本
固定成本
生产成本).销售收入
(万元)满足
,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数
的解析式(利润
销售收入
总成本);
(2)工厂生产多少台产品时,可使盈利最多?









(1)写出利润函数



(2)工厂生产多少台产品时,可使盈利最多?
将长为12米的钢筋截成12段,做成底面为正方形的长方体水箱骨架,问水箱的高
及底面边长
分别为多少时,这个水箱的表面积为最大?并求出这个水箱最大的表面积.



某公司为了促进某产品的销售,随机调查了该产品的月销售单价x(单位:元/件)及相应月销量y(单位:万件),对近5个月的月销售单价
和月销售量
的数据进行了统计,得到如下数表:
(1)建立
关于
的回归直线方程;
(2)该公司年底开展促销活动,当月销售单价为7元/件时,其月销售量达到14.8万件,若由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值不超过0.5万件,则认为所得到的回归直线方程是理想的,试问(1)中得到的回归直线方程是否理想?
(3)根据(1)的结果,若该产品成本是5元/件,月销售单价
为何值时,公司月利润的预报值最大?(注:利润=销售收入-成本).
参考公式:回归直线方程
,其中
,
参考数据:
,


月销售单价![]() | 8 | 8.5 | 9 | 9.5 | 10 |
月销售量![]() | 11 | 10 | 8 | 6 | 5 |
(1)建立


(2)该公司年底开展促销活动,当月销售单价为7元/件时,其月销售量达到14.8万件,若由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值不超过0.5万件,则认为所得到的回归直线方程是理想的,试问(1)中得到的回归直线方程是否理想?
(3)根据(1)的结果,若该产品成本是5元/件,月销售单价

参考公式:回归直线方程



参考数据:

